2D porous carbon nanosheets constructed using few-layer graphene sheets by a "medium-up" strategy for ultrahigh power-output EDLCs

Panpan Chang, Kazuki Matsumura, Jizong Zhang, Jie Qi, Chengyang Wang, Taro Kinumoto, Tomoki Tsumura, Mingming Chen, Masahiro Toyoda

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)

Abstract

2D porous carbon nanosheets (PCNs) occupy the foreground in the field of electric double-layer capacitors (EDLCs). However, the mass production of PCNs with ultrathin thicknesses is still a serious challenge. Herein, PCNs constructed of few-layer graphene sheets were synthesized from a sulfonated pitch (SP) carbon precursor and soft-template F127 by a "medium-up" strategy. SP serves as a "medium material", while F127 acts as a "string" and "spacer", which plays the leading role of structure directing and prevents the self-restacking of small graphene layers. After activation, sample PCN6 with high carbon yield is constructed with a thickness of only 1.3 nm, sufficient specific surface area of 3006 m2 g-1 and high e-conductivity of 135 S m-1. By virtue of its unique architecture, the PCN6-based EDLC exhibits excellent energy storage properties. In EMIMBF4 electrolyte, it demonstrates an ultrahigh Cg of 157.8 F g-1 (57.4 F cm-3) at 20 A g-1, possessing a top-level rate capacity C20/0.05 of 86.7%. Simultaneously, its energy density can retain up to 67.1 W h kg-1 at a high power density of 17.5 kW kg-1. The ingenious structural design of PCNs can afford inspiration for constructing other 2D architecture carbon materials.

Original languageEnglish
Pages (from-to)10331-10339
Number of pages9
JournalJournal of Materials Chemistry A
Volume6
Issue number22
DOIs
Publication statusPublished - 2018
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Fingerprint

Dive into the research topics of '2D porous carbon nanosheets constructed using few-layer graphene sheets by a "medium-up" strategy for ultrahigh power-output EDLCs'. Together they form a unique fingerprint.

Cite this