TY - JOUR
T1 - A metabolomic approach to lung cancer
AU - Hori, Suya
AU - Nishiumi, Shin
AU - Kobayashi, Kazuyuki
AU - Shinohara, Masakazu
AU - Hatakeyama, Yukihisa
AU - Kotani, Yoshikazu
AU - Hatano, Naoya
AU - Maniwa, Yoshimasa
AU - Nishio, Wataru
AU - Bamba, Takeshi
AU - Fukusaki, Eiichiro
AU - Azuma, Takeshi
AU - Takenawa, Tadaomi
AU - Nishimura, Yoshihiro
AU - Yoshida, Masaru
N1 - Funding Information:
This study was supported by grants from the Global COE Program “Global Center of Excellence for Education and Research in Integrative Membrane Biology” [S.H. and M.S.] and “Global Center of Excellence for Education and Research on Signal Transduction Medicine in the Coming Generation” [N.H., T.A. and M.Y.] from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. This study was also partly supported by a grant from the program ‘Young researchers training program for promoting innovation’ of Special Coordination Fund for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science, and Technology of Japan [S.N. and T.A.].
PY - 2011/11
Y1 - 2011/11
N2 - Lung cancer is one of the most common cancers in the world, but no good clinical markers that can be used to diagnose the disease at an early stage and predict its prognosis have been found. Therefore, the discovery of novel clinical markers is required. In this study, metabolomic analysis of lung cancer patients was performed using gas chromatography mass spectrometry. Serum samples from 29 healthy volunteers and 33 lung cancer patients with adenocarcinoma (n= 12), squamous cell carcinoma (n= 11), or small cell carcinoma (n= 10) ranging from stage I to stage IV disease and lung tissue samples from 7 lung cancer patients including the tumor tissue and its surrounding normal tissue were used. A total of 58 metabolites (57 individual metabolites) were detected in serum, and 71 metabolites were detected in the lung tissue. The levels of 23 of the 58 serum metabolites were significantly changed in all lung cancer patients compared with healthy volunteers, and the levels of 48 of the 71 metabolites were significantly changed in the tumor tissue compared with the non-tumor tissue. Partial least squares discriminant analysis, which is a form of multiple classification analysis, was performed using the serum sample data, and metabolites that had characteristic alterations in each histological subtype and disease stage were determined. Our results demonstrate that changes in metabolite pattern are useful for assessing the clinical characteristics of lung cancer. Our results will hopefully lead to the establishment of novel diagnostic tools.
AB - Lung cancer is one of the most common cancers in the world, but no good clinical markers that can be used to diagnose the disease at an early stage and predict its prognosis have been found. Therefore, the discovery of novel clinical markers is required. In this study, metabolomic analysis of lung cancer patients was performed using gas chromatography mass spectrometry. Serum samples from 29 healthy volunteers and 33 lung cancer patients with adenocarcinoma (n= 12), squamous cell carcinoma (n= 11), or small cell carcinoma (n= 10) ranging from stage I to stage IV disease and lung tissue samples from 7 lung cancer patients including the tumor tissue and its surrounding normal tissue were used. A total of 58 metabolites (57 individual metabolites) were detected in serum, and 71 metabolites were detected in the lung tissue. The levels of 23 of the 58 serum metabolites were significantly changed in all lung cancer patients compared with healthy volunteers, and the levels of 48 of the 71 metabolites were significantly changed in the tumor tissue compared with the non-tumor tissue. Partial least squares discriminant analysis, which is a form of multiple classification analysis, was performed using the serum sample data, and metabolites that had characteristic alterations in each histological subtype and disease stage were determined. Our results demonstrate that changes in metabolite pattern are useful for assessing the clinical characteristics of lung cancer. Our results will hopefully lead to the establishment of novel diagnostic tools.
KW - Biomarker
KW - GC/MS
KW - Lung cancer
KW - Metabolite
KW - Metabolomics
KW - PLS-DA
UR - http://www.scopus.com/inward/record.url?scp=80053654173&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053654173&partnerID=8YFLogxK
U2 - 10.1016/j.lungcan.2011.02.008
DO - 10.1016/j.lungcan.2011.02.008
M3 - Article
C2 - 21411176
AN - SCOPUS:80053654173
SN - 0169-5002
VL - 74
SP - 284
EP - 292
JO - Lung Cancer
JF - Lung Cancer
IS - 2
ER -