TY - JOUR
T1 - A new image data compression method–extrapolative prediction–discrete sine transform coding (in the case of one–dimensional coding)
AU - Yamane, Nobumoto
AU - Morikawa, Yoshitaka
AU - Hamada, Hiroshi
PY - 1987
Y1 - 1987
N2 - This paper proposes the extrapolative prediction‐discrete sine transform as a new highly efficient coding for the gray‐level image. In the proposed method, an extrapolative prediction is made from the immediately preceding pixel to the present pixel block, and the prediction error signal is encoded by the orthogonal transform. Assuming that the information source for the image is a stationary first‐order Markov process in the wide sense, it is shown that the orthogonal transform which decorrelates the prediction error signal can be approximated by a certain kind of sine transform. An algorithm is presented for the high‐speed execution of this data. The rate‐distortion characteristic is discussed for the case of one‐dimensional coding, and it is shown theoretically that the coding efficiency of the proposed method is nearly the same as those of the discrete 16‐pixel cosine transform with block length of 4 pixels and the 8‐pixel fast Karhunen‐Loéve transform. Comparing the coding complexities of those methods, the proposed method is shown to be especially advantageous in the hardware realization. Computer simulations were made for actual images using the fixed‐rate coding and variable‐rate coding (entropy coding), and the result supports the idea.
AB - This paper proposes the extrapolative prediction‐discrete sine transform as a new highly efficient coding for the gray‐level image. In the proposed method, an extrapolative prediction is made from the immediately preceding pixel to the present pixel block, and the prediction error signal is encoded by the orthogonal transform. Assuming that the information source for the image is a stationary first‐order Markov process in the wide sense, it is shown that the orthogonal transform which decorrelates the prediction error signal can be approximated by a certain kind of sine transform. An algorithm is presented for the high‐speed execution of this data. The rate‐distortion characteristic is discussed for the case of one‐dimensional coding, and it is shown theoretically that the coding efficiency of the proposed method is nearly the same as those of the discrete 16‐pixel cosine transform with block length of 4 pixels and the 8‐pixel fast Karhunen‐Loéve transform. Comparing the coding complexities of those methods, the proposed method is shown to be especially advantageous in the hardware realization. Computer simulations were made for actual images using the fixed‐rate coding and variable‐rate coding (entropy coding), and the result supports the idea.
UR - http://www.scopus.com/inward/record.url?scp=0023600581&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023600581&partnerID=8YFLogxK
U2 - 10.1002/ecja.4410701207
DO - 10.1002/ecja.4410701207
M3 - Article
AN - SCOPUS:0023600581
SN - 8756-6621
VL - 70
SP - 61
EP - 74
JO - Electronics and Communications in Japan (Part I: Communications)
JF - Electronics and Communications in Japan (Part I: Communications)
IS - 12
ER -