Abstract
In this article we prove that the Buchsbaum-Rim multiplicity e(F/N) of a parameter module N in a free module F=Ar is bounded above by the colength ℓA(F/N). Moreover, we prove that once the equality ℓA(F/N) = e(F/N) holds true for some parameter module N in F,then the base ring A is Cohen-Macaulay.
Original language | English |
---|---|
Pages (from-to) | 545-551 |
Number of pages | 7 |
Journal | Proceedings of the American Mathematical Society |
Volume | 138 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2010 |
Externally published | Yes |
Keywords
- Buchsbaum-Rim multiplicity
- Euler-Poincaréchar- acteristic
- Generalized Koszul complex
- Parameter module
ASJC Scopus subject areas
- Mathematics(all)
- Applied Mathematics