TY - JOUR
T1 - A novel high-Throughput3D screening system for EMT inhibitors
T2 - A pilot screening discovered the EMT inhibitory activity of CDK2 inhibitor SU9516
AU - Arai, Kazuya
AU - Eguchi, Takanori
AU - Rahman, M. Mamunur
AU - Sakamoto, Ruriko
AU - Masuda, Norio
AU - Nakatsura, Tetsuya
AU - Calderwood, Stuart K.
AU - Kozaki, Ken-ichi
AU - Itoh, Manabu
N1 - Funding Information:
We wish thank to Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology, Japan for providing the 1,330 chemical compounds. The authors wish to thank Manami Shimomura for performing time-lapse imaging.
Publisher Copyright:
© 2016 Arai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/9
Y1 - 2016/9
N2 - Epithelial-mesenchymal transition (EMT) is a crucial pathological event in cancer, particularly in tumor cell budding and metastasis. Therefore, control of EMT can represent a novel therapeutic strategy in cancer. Here, we introduce an innovative three-dimensional (3D) high-Throughput screening (HTS) system that leads to an identification of EMT inhibitors. For the establishment of the novel 3D-HTS system, we chose NanoCulture Plates (NCP) that provided a gel-free micro-patterned scaffold for cells and were independent of other spheroid formation systems using soft-Agar. In the NCP-based 3D cell culture system, A549 lung cancer cells migrated, gathered, and then formedmultiple spheroids within 7 days. Live cell imaging experiments showed that an established EMT-inducer TGF-β promoted peripheral cells around the core of spheroids to acquire mesenchymal spindle shapes, loss of intercellular adhesion, and migration from the spheroids. Along with such morphological change, EMT-related gene expression signatures were altered, particularly alteration of mRNA levels of ECAD/CDH1, NCAD/CDH2, VIM and ZEB1/TCF8. These EMT-related phenotypic changes were blocked by SB431542, a TGF-βreceptor I (TGFβR1) inhibitor. Inside of the spheroids were highly hypoxic; in contrast, spheroidderived peripheral migrating cells were normoxic, revealed by visualization and quantification using Hypoxia Probe. Thus, TGF-β-TriggeredEMT caused spheroid hypoplasia and loss of hypoxia. Spheroid EMT inhibitory (SEMTIN) activity of SB431542 was calculated from fluorescence intensities of the Hypoxia Probe, and then was utilized in a drug screening of EMT-inhibitory small molecule compounds. In a pilot screening, 9 of 1,330compounds were above the thresholds of the SEMTIN activity and cell viability. Finally, two compounds SB-525334 and SU9516 showed SEMTIN activities in a dose dependent manner. SB-525334 was a known TGFβR1 inhibitor. SU9516 was a cyclin-dependent kinase 2 (CDK2) inhibitor, which we showed also had an EMT-inhibitory activity. The half maximal inhibitory concentration (IC50) of SB-525334 and SU9516 were 0.31 μMand 1.21 μM, respectively, while IC50 of SB431542 was 2.38 μM. Taken together, it was shown that this 3D NCP-based HTS system was useful for screening of EMT-regulatory drugs.
AB - Epithelial-mesenchymal transition (EMT) is a crucial pathological event in cancer, particularly in tumor cell budding and metastasis. Therefore, control of EMT can represent a novel therapeutic strategy in cancer. Here, we introduce an innovative three-dimensional (3D) high-Throughput screening (HTS) system that leads to an identification of EMT inhibitors. For the establishment of the novel 3D-HTS system, we chose NanoCulture Plates (NCP) that provided a gel-free micro-patterned scaffold for cells and were independent of other spheroid formation systems using soft-Agar. In the NCP-based 3D cell culture system, A549 lung cancer cells migrated, gathered, and then formedmultiple spheroids within 7 days. Live cell imaging experiments showed that an established EMT-inducer TGF-β promoted peripheral cells around the core of spheroids to acquire mesenchymal spindle shapes, loss of intercellular adhesion, and migration from the spheroids. Along with such morphological change, EMT-related gene expression signatures were altered, particularly alteration of mRNA levels of ECAD/CDH1, NCAD/CDH2, VIM and ZEB1/TCF8. These EMT-related phenotypic changes were blocked by SB431542, a TGF-βreceptor I (TGFβR1) inhibitor. Inside of the spheroids were highly hypoxic; in contrast, spheroidderived peripheral migrating cells were normoxic, revealed by visualization and quantification using Hypoxia Probe. Thus, TGF-β-TriggeredEMT caused spheroid hypoplasia and loss of hypoxia. Spheroid EMT inhibitory (SEMTIN) activity of SB431542 was calculated from fluorescence intensities of the Hypoxia Probe, and then was utilized in a drug screening of EMT-inhibitory small molecule compounds. In a pilot screening, 9 of 1,330compounds were above the thresholds of the SEMTIN activity and cell viability. Finally, two compounds SB-525334 and SU9516 showed SEMTIN activities in a dose dependent manner. SB-525334 was a known TGFβR1 inhibitor. SU9516 was a cyclin-dependent kinase 2 (CDK2) inhibitor, which we showed also had an EMT-inhibitory activity. The half maximal inhibitory concentration (IC50) of SB-525334 and SU9516 were 0.31 μMand 1.21 μM, respectively, while IC50 of SB431542 was 2.38 μM. Taken together, it was shown that this 3D NCP-based HTS system was useful for screening of EMT-regulatory drugs.
UR - http://www.scopus.com/inward/record.url?scp=84990950603&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84990950603&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0162394
DO - 10.1371/journal.pone.0162394
M3 - Article
C2 - 27622654
AN - SCOPUS:84990950603
SN - 1932-6203
VL - 11
JO - PloS one
JF - PloS one
IS - 9
M1 - e0162394
ER -