A theoretical study on anomalous temperature dependence of pKw of water

Takuma Yagasaki, Kensuke Iwahashi, Shinji Saito, Iwao Ohmine

Research output: Contribution to journalArticlepeer-review

48 Citations (Scopus)


pH, with its well-known value of 7 at ambient condition, is a most basic property of water, with wide implications in chemistry and biology. The pH value is determined by the tendency of autoionization of water molecules into ion pairs, H+ and O H-, and is expected to vary extensively with the water condition, which determines the stability of the ion pairs. When temperature rises from the normal to the supercritical region, the pH of water experimentally exhibits complex, nonmonotonic temperature dependence, that is, it first decreases from 7 and then increases rapidly. Accurate theoretical evaluation of pH and microscopic understanding of this anomalous behavior have proven to be a challenging task because the hydration of these ions, especially for O H-, is very difficult to reproduce. In the present study a molecular simulation is performed to understand this peculiar temperature dependence. The imbalance between the ion-water and the water-water molecular interaction strengths and the concomitant water density enhancement in the hydration shell, observed in the supercritical liquids, serve to put a subtle balance to produce this temperature dependence of the pH value. It is found that the large charge transfers from H+ and O H- to the surrounding water molecules take place. In these transfers, not only water molecules in the neighboring hydration shell but also those in the outer hydration shell play a significant role. The coordination number of water molecules around O H- is found to be 4.5 at 300 K, which decreases slowly with temperature, for example, 4 at 800 K, in the present calculation.

Original languageEnglish
Article number144504
JournalJournal of Chemical Physics
Issue number14
Publication statusPublished - 2005
Externally publishedYes

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry


Dive into the research topics of 'A theoretical study on anomalous temperature dependence of pKw of water'. Together they form a unique fingerprint.

Cite this