A variety of 'exhausted' T cells in the tumor microenvironment

Research output: Contribution to journalReview articlepeer-review

16 Citations (Scopus)

Abstract

In T-cell biology, 'exhaustion' was initially described as a hyporesponsive state in CD8+ T cells during chronic infections. Recently, exhaustion has been recognized as a T-cell dysfunctional state in the tumor microenvironment (TME). The term 'exhaustion' is used mainly to refer to effector T cells with a reduced capacity to secrete cytokines and an increased expression of inhibitory receptors. The up-regulation of exhaustion-related inhibitory receptors, including programmed cell death protein 1 (PD-1), in such T cells has been associated with the development of tumors, prompting the development of immune checkpoint inhibitors. In addition to CD8+ T cells, CD4+ T cells, including the regulatory T (Treg) cell subset, perform a wide variety of functions within the adaptive immune system. Up-regulation of the same inhibitory receptors that are associated with CD8+ T-cell exhaustion has also been identified in CD4+ T cells in chronic infections and cancers, suggesting a similar CD4+ T-cell exhaustion phenotype. For instance, high expression of PD-1 has been observed in Treg cells in the TME, and such Treg cells can play an important role in the resistance to PD-1 blockade therapies. Furthermore, recent progress in single-cell RNA sequencing has shown that CD4+ T cells with cytotoxic activity are also vulnerable to exhaustion. In this review, we will discuss novel insights into various exhausted T-cell subsets, which could reveal novel therapeutic targets and strategies to induce a robust anti-tumor immune response.

Original languageEnglish
Pages (from-to)563-570
Number of pages8
JournalInternational Immunology
Volume34
Issue number11
DOIs
Publication statusPublished - Nov 1 2022

Keywords

  • CD4T cell
  • T-cell exhaustion
  • cytotoxic CD4T cell
  • regulatory T cell

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Fingerprint

Dive into the research topics of 'A variety of 'exhausted' T cells in the tumor microenvironment'. Together they form a unique fingerprint.

Cite this