Abrupt change of the superconducting gap structure at the nematic critical point in FeSe1-xSx

Yuki Sato, Shigeru Kasahara, Tomoya Taniguchi, Xiangzhuo Xing, Yuichi Kasahara, Yoshifumi Tokiwa, Youichi Yamakawa, Hiroshi Kontani, Takasada Shibauchi, Yuji Matsuda

Research output: Contribution to journalArticlepeer-review

62 Citations (Scopus)


The emergence of the nematic electronic state that breaks rotational symmetry is one of the most fascinating properties of the iron-based superconductors, and has relevance to cuprates as well. FeSe has a unique ground state in which superconductivity coexists with a nematic order without long-range magnetic ordering, providing a significant opportunity to investigate the role of nematicity in the superconducting pairing interaction. Here, to reveal how the superconducting gap evolves with nematicity, we measure the thermal conductivity and specific heat of FeSe1-xSx, in which the nematicity is suppressed by isoelectronic sulfur substitution and a nematic critical point (NCP) appears at xc ≈0:17. We find that, in the whole nematic regime (0≤x ≤0:17), the field dependence of two quantities consistently shows two-gap behavior; one gap is small but highly anisotropic with deep minima or line nodes, and the other is larger and more isotropic. In stark contrast, in the tetragonal regime (x = 0:20), the larger gap becomes strongly anisotropic, demonstrating an abrupt change in the superconducting gap structure at the NCP. Near the NCP, charge fluctuations of dxz and dyz orbitals are enhanced equally in the tetragonal side, whereas they develop differently in the orthorhombic side. Our observation therefore directly implies that the orbital-dependent nature of the nematic fluctuations has a strong impact on the superconducting gap structure and hence on the pairing interaction.

Original languageEnglish
Pages (from-to)1227-1231
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number6
Publication statusPublished - Feb 6 2018
Externally publishedYes


  • Iron-based superconductors
  • Nematicity
  • Pairing interaction
  • Superconducting gap structure
  • Superconductivity

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Abrupt change of the superconducting gap structure at the nematic critical point in FeSe1-xSx'. Together they form a unique fingerprint.

Cite this