Abstract
The current work describes the marked rate of acceleration caused by phosphine ligands on the rhodium-catalyzed dehydrogenative silylation and germylation of unactivated C(sp3)-H bonds. The reactivity was affected by the steric and electronic nature of the phosphine ligands. The use of the bulky and electron-rich diphosphine ligand (R)-DTBM-SEGPHOS was highly effective to yield the dehydrogenative silylation products selectively in the presence of a hydrogen acceptor. An appropriate choice of C2-symmetric chiral diphosphine ligand enables the asymmetric dehydrogenative silylation via the enantioselective desymmetrization of the C(sp3)-H bond. The unprecedented catalytic germylation of C(sp3)-H bonds with dehydrogenation was also examined with the combination of the rhodium complex and a wide bite angle diphosphine ligand to provide the corresponding 2,3-dihydrobenzo[b]germoles in good yield.
Original language | English |
---|---|
Pages (from-to) | 5407-5414 |
Number of pages | 8 |
Journal | Journal of Organic Chemistry |
Volume | 80 |
Issue number | 11 |
DOIs | |
Publication status | Published - Jun 5 2015 |
ASJC Scopus subject areas
- Organic Chemistry