TY - JOUR
T1 - Accretionary complex origin of the mafic-ultramafic bodies of the sanbagawa belt, central shikoku, Japan
AU - Terabayashi, Masaru
AU - Okamoto, Kazuaki
AU - Yamamoto, Hiroshi
AU - Kaneko, Yoshiyuki
AU - Ota, Tsutomu
AU - Maruyama, Shigenori
AU - Katayama, Ikuo
AU - Komiya, Tsuyoshi
AU - Ishikawa, Akira
AU - Anma, Ryo
AU - Ozawa, Hiroaki
AU - Windley, Brian F.
AU - Liou, J. G.
PY - 2005/10
Y1 - 2005/10
N2 - In the high-grade Cretaceous Sanbagawa high-pressure (HP) metamorphic belt, our new 1:5000 scale mapping of eclogitic mafic-ultramafic bodies and their surrounding epidote-amphibolite—facies schists has revealed a duplex structure formed by the subduction of the Izanagi-Pacific oceanic plate. Lithologies of the two largest mafic-ultramafic bodies in the Sanbagawa belt, the Iratsu eclogite and the Higashi-Akaishi peridotite, strike WNW-ESE and dip N; the upper boundary with the surrounding schist is a normal fault, whereas the lower boundary is a thrust. The Iratsu body is subdivided into at least two tectonic units; the unit boundary is subparallel to a lithological boundary. Protoliths of the upper unit are gabbro, basalt, minor quartz rock, and pelite, and those of the lower unit are pyroxenite, gabbro, basalt, chert, and marble, in ascending order. The lower unit is characterized by layers of alternating eclogitic metagabbro and pyroxenite. The layers are extensive at the bottom of the Iratsu eclogite, and transient toward the Higashi-Akaishi body. Eclogitefacies metapsammite is intercalated between the Iratsu and Higashi-Akaishi bodies. Our mapping has revealed the following: (1) a duplex structure of the mafic-ultramafic bodies indicating their accretionary complex origin; (2) reconstructed oceanic plate stratigraphy in ascending order of peridotite, gabbro, basalt, limestone, minor chert, and pelite, suggesting that different parts of the protolith were derived from a mid-oceanic topographic high, an oceanic island or plateau, and an overlying trench turbidite; and (3) a change in the convergent motion of the oceanic plate from NW to NE during the accretion of the large oceanic island or plateau.
AB - In the high-grade Cretaceous Sanbagawa high-pressure (HP) metamorphic belt, our new 1:5000 scale mapping of eclogitic mafic-ultramafic bodies and their surrounding epidote-amphibolite—facies schists has revealed a duplex structure formed by the subduction of the Izanagi-Pacific oceanic plate. Lithologies of the two largest mafic-ultramafic bodies in the Sanbagawa belt, the Iratsu eclogite and the Higashi-Akaishi peridotite, strike WNW-ESE and dip N; the upper boundary with the surrounding schist is a normal fault, whereas the lower boundary is a thrust. The Iratsu body is subdivided into at least two tectonic units; the unit boundary is subparallel to a lithological boundary. Protoliths of the upper unit are gabbro, basalt, minor quartz rock, and pelite, and those of the lower unit are pyroxenite, gabbro, basalt, chert, and marble, in ascending order. The lower unit is characterized by layers of alternating eclogitic metagabbro and pyroxenite. The layers are extensive at the bottom of the Iratsu eclogite, and transient toward the Higashi-Akaishi body. Eclogitefacies metapsammite is intercalated between the Iratsu and Higashi-Akaishi bodies. Our mapping has revealed the following: (1) a duplex structure of the mafic-ultramafic bodies indicating their accretionary complex origin; (2) reconstructed oceanic plate stratigraphy in ascending order of peridotite, gabbro, basalt, limestone, minor chert, and pelite, suggesting that different parts of the protolith were derived from a mid-oceanic topographic high, an oceanic island or plateau, and an overlying trench turbidite; and (3) a change in the convergent motion of the oceanic plate from NW to NE during the accretion of the large oceanic island or plateau.
UR - http://www.scopus.com/inward/record.url?scp=26844435604&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=26844435604&partnerID=8YFLogxK
U2 - 10.2747/0020-6814.47.10.1058
DO - 10.2747/0020-6814.47.10.1058
M3 - Article
AN - SCOPUS:26844435604
SN - 0020-6814
VL - 47
SP - 1058
EP - 1073
JO - International Geology Review
JF - International Geology Review
IS - 10
ER -