TY - JOUR
T1 - An ab initio calculation of 17O and 29Si NMR parameters for SiO2 polymorphs
AU - Xue, Xianyu
AU - Kanzaki, Masami
N1 - Funding Information:
We thank Dr. J. Klinowski, editor-in-chief, for the prompt handling of our manuscript. All the calculations were performed on an HP Exemplar V2250, funded by the Ministry of Education, Science, Sports and Culture of Japan. The cluster structures are plotted using the PPC_MacMolplt software by Brett Bode.
PY - 2000/7
Y1 - 2000/7
N2 - Ab initio molecular orbital calculations (Hartree-Fock, HF and density functional theories, DFTs) have been carried out for SiO2 polymorphs coesite, low cristobalite, and α-quartz, in order to investigate the reliability of this method for predicting 29Si and 17O nuclear magnetic resonance (NMR) properties of silicates. Oxygen- and silicon-centered clusters consisting of one (1T) to three tetrahedral (3T) shells (one to four atomic shells), taken from real crystal structure, have been investigated. It is found that for reasonable predication of both the 29Si and 17O chemical shifts (δiSi and δiO), the minimum cluster is one that gives the correct second neighbors to the nucleus of interest. Both the δiSi and δiO have reached convergence with respect to cluster size at the OH-terminated two tetrahedral (2T) shell (three atomic shells around Si and four atomic shells around O) model. At convergence, the calculated δiSi values agree well (within ±1 ppm) with experimental data. The calculated 17O electric field gradient (EFG)-related parameters also agree with experimental data within experimental uncertainties. The calculation also reproduces small differences in δiO for O sites with similar tetrahedral connectivities, but shows deviations up to about 10 ppm in relative difference for O sites with different tetrahedral connectivities. The poor performance for the latter is mainly due to the approximations of the HF method. Our study thus suggests that the ab initio calculation method is a reliable mean for predicting 29Si and 17O NMR parameters for silicates. Such an approach should find application not only to well-ordered crystalline phases, but also to disordered materials, by combining with other techniques, such as the molecular dynamics simulation method.
AB - Ab initio molecular orbital calculations (Hartree-Fock, HF and density functional theories, DFTs) have been carried out for SiO2 polymorphs coesite, low cristobalite, and α-quartz, in order to investigate the reliability of this method for predicting 29Si and 17O nuclear magnetic resonance (NMR) properties of silicates. Oxygen- and silicon-centered clusters consisting of one (1T) to three tetrahedral (3T) shells (one to four atomic shells), taken from real crystal structure, have been investigated. It is found that for reasonable predication of both the 29Si and 17O chemical shifts (δiSi and δiO), the minimum cluster is one that gives the correct second neighbors to the nucleus of interest. Both the δiSi and δiO have reached convergence with respect to cluster size at the OH-terminated two tetrahedral (2T) shell (three atomic shells around Si and four atomic shells around O) model. At convergence, the calculated δiSi values agree well (within ±1 ppm) with experimental data. The calculated 17O electric field gradient (EFG)-related parameters also agree with experimental data within experimental uncertainties. The calculation also reproduces small differences in δiO for O sites with similar tetrahedral connectivities, but shows deviations up to about 10 ppm in relative difference for O sites with different tetrahedral connectivities. The poor performance for the latter is mainly due to the approximations of the HF method. Our study thus suggests that the ab initio calculation method is a reliable mean for predicting 29Si and 17O NMR parameters for silicates. Such an approach should find application not only to well-ordered crystalline phases, but also to disordered materials, by combining with other techniques, such as the molecular dynamics simulation method.
KW - Ab initio
KW - Cluster
KW - Crystal structure
KW - NMR
KW - SiO polymorph
UR - http://www.scopus.com/inward/record.url?scp=0034214868&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034214868&partnerID=8YFLogxK
U2 - 10.1016/S0926-2040(00)00075-8
DO - 10.1016/S0926-2040(00)00075-8
M3 - Article
C2 - 10928629
AN - SCOPUS:0034214868
SN - 0926-2040
VL - 16
SP - 245
EP - 259
JO - Solid State Nuclear Magnetic Resonance
JF - Solid State Nuclear Magnetic Resonance
IS - 4
ER -