An elastodynamic computational time-reversal method for shape reconstruction of traction-free scatterers

Kazushi Kimoto, Kazuyuki Nakahata, Takahiro Saitoh

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


This study proposes an elastodynamic time-reversal imaging method for the shape reconstruction of flaws with the traction-free boundary. The proposed method is a generalization of the synthetic aperture focusing technique (SAFT) implemented with the aid of time-reversal back-propagation computation. The reconstruction formula is derived from the boundary condition applied on the flaw boundary without using a diffraction theory yielding an inherently normalized objective function. No restriction is imposed on the wave source or the material properties as long as the wave medium is linearly elastic and lossless. There are two major advantages with the proposed method. First, it is free from ray tracing. The method can thus work with an arbitrary source and the wave modes including inhomogeneous waves. Second, signal conditioning is not required to focus a scattered field to the correct location in the reconstructed image. Numerical examples are presented to demonstrate the performance and benefits of the proposed method. In the numerical examples, the shape of cavities and cracks in an elastic layer is reconstructed from synthetic data. The results show that the method works well with the reverberating incident fields in which inhomogeneous and body waves coexist. Also demonstrated is that the curvature of the cavities is resolved well at the scale of the incident wave length. Through the numerical examples, the method is shown to be a versatile imaging method potentially useful for ultrasonic nondestructive characterization of small flaws.

Original languageEnglish
Pages (from-to)23-40
Number of pages18
JournalWave Motion
Publication statusPublished - Jul 1 2017


  • Nondestructive evaluation
  • Shape reconstruction
  • Synthetic aperture focusing
  • Time-reversal
  • Ultrasonic imaging

ASJC Scopus subject areas

  • Modelling and Simulation
  • Physics and Astronomy(all)
  • Computational Mathematics
  • Applied Mathematics


Dive into the research topics of 'An elastodynamic computational time-reversal method for shape reconstruction of traction-free scatterers'. Together they form a unique fingerprint.

Cite this