An Exciton Dynamics Model of Bryopsis corticulans Light-Harvesting Complex II

Hoang Long Nguyen, Thanh Nhut Do, Parveen Akhtar, Thomas L.C. Jansen, Jasper Knoester, Wenda Wang, Jian Ren Shen, Petar H. Lambrev, Howe Siang Tan

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


Bryopsis corticulans is a marine green macroalga adapted to the intertidal environment. It possesses siphonaxanthin-binding light-harvesting complexes of photosystem II (LHCII) with spectroscopic properties markedly different from the LHCII in plants. By applying a phenomenological fitting procedure to the two-dimensional electronic spectra of the LHCII from B. corticulans measured at 77 K, we can extract information about the excitonic states and energy-transfer processes. The fitting method results in well-converged parameters, including excitonic energy levels with their respective transition dipole moments, spectral widths, energy-transfer rates, and coupling properties. The 2D spectra simulated from the fitted parameters concur very well with the experimental data, showing the robustness of the fitting method. An excitonic energy-transfer scheme can be constructed from the fitting parameters. It shows the rapid energy transfer from chlorophylls (Chls) b to a at subpicosecond time scales and a long-lived state in the Chl b region at around 659 nm. Three weakly connected terminal states are resolved at 671, 675, and 677 nm. The lowest state is higher in energy than that in plant LHCII, which is probably because of the fewer number of Chls a in a B. corticulans LHCII monomer. Modeling based on existing Hamiltonians for the plant LHCII structure with two Chls a switched to Chls b suggests several possible Chl a-b replacements in comparison with those of plant LHCII. The adaptive changes result in a slower energy equilibration in the complex, revealed by the longer relaxation times of several exciton states compared to those of plant LHCII. The strength of our phenomenological fitting method for obtaining excitonic energy levels and energy-transfer network is put to the test in systems such as B. corticulans LHCII, where prior knowledge on exact assignment and spatial locations of pigments are lacking.

Original languageEnglish
Pages (from-to)1134-1143
Number of pages10
JournalJournal of Physical Chemistry B
Issue number4
Publication statusPublished - Feb 4 2021

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry


Dive into the research topics of 'An Exciton Dynamics Model of Bryopsis corticulans Light-Harvesting Complex II'. Together they form a unique fingerprint.

Cite this