TY - JOUR
T1 - An important factor in CH4 activation by Zn ion in comparison with Mg ion in MFI
T2 - The superior electron-accepting nature of Zn2+
AU - Oda, Akira
AU - Torigoe, Hiroe
AU - Itadani, Atsushi
AU - Ohkubo, Takahiro
AU - Yumura, Takashi
AU - Kobayashi, Hisayoshi
AU - Kuroda, Yasushige
PY - 2014/7/17
Y1 - 2014/7/17
N2 - We present clear IR and density functional theory (DFT) evidence demonstrating that the electron-accepting nature of Zn2+ ion exchanged in MFI-type zeolite (ZnMFI) plays a dominant role in CH4 activation. The IR study revealed that the heterolytic dissociation of CH 4 takes place on the Zn2+ ion exchanged in MFI under a CH4 atmosphere even near room temperature, whereas a similar reaction scarcely occurred on Mg2+ ion exchanged in MFI, although the ionic radius and charge of Mg2+ are almost the same as those of Zn 2+. These data indicate that the dissociation reaction of CH 4 on Zn2+ in MFI is facilitated not only by the electrostatic interaction but also by the electron-transfer interaction. This interpretation was clearly evidenced by the observed v1 mode of the C-H symmetric stretching vibration, i.e., a larger band shift toward lower wavenumbers, for the molecular CH4 adsorbed on ZnMFI, compared with those for a gaseous CH4 molecule. Additional experiments were also performed by the IR method utilizing CO as a probe molecule that has an electron-donating nature. All experimental data presented were successfully explained in terms of the superior electron-accepting nature of Zn2+ exchanged in MFI. Furthermore, the DFT calculation method completely explained all experimental data by adopting the M7S2 model, which was truncated from the ZnMFI structure; the electron-accepting nature is dominant in the heterolytic activation of CH4 in the Zn2+ ion in MFI in comparison with that of Mg2+ exchanged at the same site. We have thus shown that the electron-transfer interaction between Zn2+ and CH4 plays a key role in the heterolytic CH4 activation process: the σ donation from the σ(C-H) orbital of CH4 toward the Zn 4s orbital through overlapping with each orbital.
AB - We present clear IR and density functional theory (DFT) evidence demonstrating that the electron-accepting nature of Zn2+ ion exchanged in MFI-type zeolite (ZnMFI) plays a dominant role in CH4 activation. The IR study revealed that the heterolytic dissociation of CH 4 takes place on the Zn2+ ion exchanged in MFI under a CH4 atmosphere even near room temperature, whereas a similar reaction scarcely occurred on Mg2+ ion exchanged in MFI, although the ionic radius and charge of Mg2+ are almost the same as those of Zn 2+. These data indicate that the dissociation reaction of CH 4 on Zn2+ in MFI is facilitated not only by the electrostatic interaction but also by the electron-transfer interaction. This interpretation was clearly evidenced by the observed v1 mode of the C-H symmetric stretching vibration, i.e., a larger band shift toward lower wavenumbers, for the molecular CH4 adsorbed on ZnMFI, compared with those for a gaseous CH4 molecule. Additional experiments were also performed by the IR method utilizing CO as a probe molecule that has an electron-donating nature. All experimental data presented were successfully explained in terms of the superior electron-accepting nature of Zn2+ exchanged in MFI. Furthermore, the DFT calculation method completely explained all experimental data by adopting the M7S2 model, which was truncated from the ZnMFI structure; the electron-accepting nature is dominant in the heterolytic activation of CH4 in the Zn2+ ion in MFI in comparison with that of Mg2+ exchanged at the same site. We have thus shown that the electron-transfer interaction between Zn2+ and CH4 plays a key role in the heterolytic CH4 activation process: the σ donation from the σ(C-H) orbital of CH4 toward the Zn 4s orbital through overlapping with each orbital.
UR - http://www.scopus.com/inward/record.url?scp=84904550029&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84904550029&partnerID=8YFLogxK
U2 - 10.1021/jp5013413
DO - 10.1021/jp5013413
M3 - Article
AN - SCOPUS:84904550029
SN - 1932-7447
VL - 118
SP - 15234
EP - 15241
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 28
ER -