TY - JOUR
T1 - Analysis of spiral ganglion cell populations in children with normal and pathological ears
AU - Miura, Makoto
AU - Hirsch, Barry E.
AU - Sando, Isamu
AU - Orita, Yorihisa
PY - 2002/12/1
Y1 - 2002/12/1
N2 - This study analyzed features of total and segmental spiral ganglion cell populations in children with normal ears and those with various pathological conditions. Sixty-three human temporal bone specimens, obtained from 43 children 4 days to 9 years of age, were studied histopathologically. These specimens were divided into 5 diagnostic groups: group 1, normal ears (13 ears); group 2, congenital infectious diseases (13 ears); group 3, chromosomal aberrations (11 ears); group 4, multiple craniofacial anomalies with hereditary or genetic causes (21 ears); and group 5, perinatal and postnatal asphyxia (5 ears). Eighteen of the 63 ears had documented profound deafness. In either normal ears (group 1) or those with various pathological conditions (groups 2 through 5), the total number of ganglion cells did not change as a function of age during the first 10 years. The total number of ganglion cells was significantly larger in group 1 (33,702) than in each of groups 2, 3, 4, and 5 (p < .01), and the number was significantly larger in group 2 than in each of groups 4 and 5 (p < .01 and p < .05, respectively). The ratio of basal to apical ganglion cell populations remained constant in both normal and pathological ears. Each ratio of the number of basal and apical ganglion cells in groups 2, 3, 4, and 5 to the mean number in group 1 (basal and apical survival ratios) was at least approximately 40%. There was no statistical difference between these two ratios in groups 2, 3, 4, and 5. The mean (±SD) total number of ganglion cells in ears with documented profound deafness was 15,417 ± 5,944, which is approximately 40% of those present in normal ears. Our results suggest that normally, cochlear neurons are completely present at birth and minimally regress during the first decade of life. In addition, although intergroup differences among various pathological groups were present, the majority of pathological ears had more than 10,000 spiral ganglion cells present. Cochlear implantation has gradually been recognized as an effective and reliable tool for rehabilitation of children who have profound deafness, even congenitally or prelingually deafened children. On the basis of the results obtained in this study, we discuss the implications for cochlear implantation in children.
AB - This study analyzed features of total and segmental spiral ganglion cell populations in children with normal ears and those with various pathological conditions. Sixty-three human temporal bone specimens, obtained from 43 children 4 days to 9 years of age, were studied histopathologically. These specimens were divided into 5 diagnostic groups: group 1, normal ears (13 ears); group 2, congenital infectious diseases (13 ears); group 3, chromosomal aberrations (11 ears); group 4, multiple craniofacial anomalies with hereditary or genetic causes (21 ears); and group 5, perinatal and postnatal asphyxia (5 ears). Eighteen of the 63 ears had documented profound deafness. In either normal ears (group 1) or those with various pathological conditions (groups 2 through 5), the total number of ganglion cells did not change as a function of age during the first 10 years. The total number of ganglion cells was significantly larger in group 1 (33,702) than in each of groups 2, 3, 4, and 5 (p < .01), and the number was significantly larger in group 2 than in each of groups 4 and 5 (p < .01 and p < .05, respectively). The ratio of basal to apical ganglion cell populations remained constant in both normal and pathological ears. Each ratio of the number of basal and apical ganglion cells in groups 2, 3, 4, and 5 to the mean number in group 1 (basal and apical survival ratios) was at least approximately 40%. There was no statistical difference between these two ratios in groups 2, 3, 4, and 5. The mean (±SD) total number of ganglion cells in ears with documented profound deafness was 15,417 ± 5,944, which is approximately 40% of those present in normal ears. Our results suggest that normally, cochlear neurons are completely present at birth and minimally regress during the first decade of life. In addition, although intergroup differences among various pathological groups were present, the majority of pathological ears had more than 10,000 spiral ganglion cells present. Cochlear implantation has gradually been recognized as an effective and reliable tool for rehabilitation of children who have profound deafness, even congenitally or prelingually deafened children. On the basis of the results obtained in this study, we discuss the implications for cochlear implantation in children.
KW - Child
KW - Cochlear implantation
KW - Spiral ganglion cell
KW - Temporal bone histopathology
UR - http://www.scopus.com/inward/record.url?scp=0036917167&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036917167&partnerID=8YFLogxK
U2 - 10.1177/000348940211101201
DO - 10.1177/000348940211101201
M3 - Article
C2 - 12498365
AN - SCOPUS:0036917167
SN - 0003-4894
VL - 111
SP - 1059
EP - 1065
JO - Annals of Otology, Rhinology and Laryngology
JF - Annals of Otology, Rhinology and Laryngology
IS - 12
ER -