TY - JOUR
T1 - Antiparkinson drug benztropine suppresses tumor growth, circulating tumor cells, and metastasis by acting on SLC6A3/dat and reducing STAT3
AU - Sogawa, Chiharu
AU - Eguchi, Takanori
AU - Tran, Manh Tien
AU - Ishige, Masayuki
AU - Trin, Kilian
AU - Okusya, Yuka
AU - Taha, Eman Ahmed
AU - Lu, Yanyin
AU - Kawai, Hotaka
AU - Sogawa, Norio
AU - Takigawa, Masaharu
AU - Calderwood, Stuart K.
AU - Okamoto, Kuniaki
AU - Kozaki, Ken-ichi
N1 - Funding Information:
Funding: This work was supported by JSPS KAKENHI, grant numbers 17K11643 (CS, TE), JP17K11642 (TE), JP17K17895 (YO), JP17K11669 (TE, CS), JP18K09789-KN (TE), and JP17K11689 (NS), 19H04051-HO (TE), 19H03817-MT (MT, TE), Suzuki Kenzo Memorial Foundation (TE), and by Ryobi Teien Memorial Foundation (TE, CS, KO).
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/2
Y1 - 2020/2
N2 - Tumor growth, progression, and therapy resistance are crucial factors in the prognosis of cancer. The properties of three-dimensional (3D) tumor-like organoids (tumoroids) more closely resemble in vivo tumors compared to two-dimensionally cultured cells and are therefore effectively used for assays and drug screening. We here established a repurposed drug for novel anticancer research and therapeutics using a 3D tumoroid-based screening system. We screened six pharmacologically active compounds by using an original tumoroid-based multiplex phenotypic screening system with a matrix metalloproteinase 9 (MMP9) promoter-driven fluorescence reporter for the evaluation of both tumoroid formation and progression. The antiparkinson drug benztropine was the most effective compound uncovered by the screen. Benztropine significantly inhibited in vitro tumoroid formation, cancer cell survival, and MMP9 promoter activity. Benztropine also reduced the activity of oncogenic signaling transducers and trans-activators for MMP9, including STAT3, NF-κB, and β-catenin, and the properties of cancer stem cells/cancer-initiating cells. Benztropine and GBR-12935 directly targeted the dopamine transporter DAT/SLC6A3, whose genetic alterations such as amplification were correlated with poor prognosis for cancer patients. Benztropine also inhibited the tumor growth, circulating tumor cell (CTC) number, and rate of metastasis in a tumor allograft model in mice. In conclusion, we propose the repurposing of benztropine for anticancer research and therapeutics that can suppress tumor progression, CTC, and metastasis of aggressive cancers by reducing key pro-tumorigenic factors.
AB - Tumor growth, progression, and therapy resistance are crucial factors in the prognosis of cancer. The properties of three-dimensional (3D) tumor-like organoids (tumoroids) more closely resemble in vivo tumors compared to two-dimensionally cultured cells and are therefore effectively used for assays and drug screening. We here established a repurposed drug for novel anticancer research and therapeutics using a 3D tumoroid-based screening system. We screened six pharmacologically active compounds by using an original tumoroid-based multiplex phenotypic screening system with a matrix metalloproteinase 9 (MMP9) promoter-driven fluorescence reporter for the evaluation of both tumoroid formation and progression. The antiparkinson drug benztropine was the most effective compound uncovered by the screen. Benztropine significantly inhibited in vitro tumoroid formation, cancer cell survival, and MMP9 promoter activity. Benztropine also reduced the activity of oncogenic signaling transducers and trans-activators for MMP9, including STAT3, NF-κB, and β-catenin, and the properties of cancer stem cells/cancer-initiating cells. Benztropine and GBR-12935 directly targeted the dopamine transporter DAT/SLC6A3, whose genetic alterations such as amplification were correlated with poor prognosis for cancer patients. Benztropine also inhibited the tumor growth, circulating tumor cell (CTC) number, and rate of metastasis in a tumor allograft model in mice. In conclusion, we propose the repurposing of benztropine for anticancer research and therapeutics that can suppress tumor progression, CTC, and metastasis of aggressive cancers by reducing key pro-tumorigenic factors.
KW - Benztropine
KW - Circulating tumor cell (CTC)
KW - Dopamine transporter (DAT)
KW - Drug repositioning/repurposing
KW - Signal transducer and activator of transcription (STAT)
KW - Three-dimensional (3D) culture
KW - Tumoroids
UR - http://www.scopus.com/inward/record.url?scp=85079907420&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85079907420&partnerID=8YFLogxK
U2 - 10.3390/cancers12020523
DO - 10.3390/cancers12020523
M3 - Article
AN - SCOPUS:85079907420
SN - 2072-6694
VL - 12
JO - Cancers
JF - Cancers
IS - 2
M1 - 523
ER -