Antitumor impact of p14ARF on gefitinib-resistant non-small cell lung cancers

Ken Saito, Nagio Takigawa, Naoko Ohtani, Hidekazu Iioka, Yuki Tomita, Ryuzo Ueda, Junya Fukuoka, Kazuhiko Kuwahara, Eiki Ichihara, Katsuyuki Kiura, Eisaku Kondo

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)


Activation of the epidermal growth factor receptor (EGFR) has been observed in many malignant tumors and its constitutive signal transduction facilitates the proliferation of tumors. EGFR-tyrosine kinase inhibitors, such as gefitinib, are widely used as a molecular-targeting agent for the inactivation of EGFR signaling and show considerable therapeutic effect in non-small cell lung cancers harboring activating EGFR mutations. However, prolonged treatment inevitably produces tumors with additional gefitinibresistant mutations in EGFR, which is a critical issue for current therapeutics.We aimed to characterize the distinct molecular response to gefitinib between the drug-resistant and drug-sensitive lung adenocarcinoma cells in order to learn about therapeutics based on the molecular information. From the quantitative PCR analysis, we found a specific increase in p14ARF expression in gefitinib-sensitive lung adenocarcinoma clones, which was absent in gefitinib-resistant clones. Moreover, mitochondria-targeted p14ARF triggered themost augmented apoptosis in both clones. We identified the amino acid residues spanning from 38 to 65 as a functional core of mitochondrial p14ARF (p14 38-65 a.a.), which reduced the mitochondrial membrane potential and caused caspase-9 activation. The synthesized peptide covering the p14 38-65 a.a. induced growth suppression of the gefitinib-resistant clones without affecting nonneoplastic cells. Notably, transduction of the minimized dose of the p14 38-65 peptide restored the response to gefitinib like that in the sensitive clones. These findings suggest that the region of p14ARF 38-65 a.a. is critical in the pharmacologic action of gefitinib against EGFR-mutated lung adenocarcinoma cells and has potential utility in the therapeutics of gefitinib-resistant cancers. Mol Cancer Ther; 12(8); 1616-28.

Original languageEnglish
Pages (from-to)1616-1628
Number of pages13
JournalMolecular cancer therapeutics
Issue number8
Publication statusPublished - Aug 2013

ASJC Scopus subject areas

  • Oncology
  • Cancer Research


Dive into the research topics of 'Antitumor impact of p14ARF on gefitinib-resistant non-small cell lung cancers'. Together they form a unique fingerprint.

Cite this