Automatic detection of early gastric cancer in endoscopic images using a transferring convolutional neural network

Y. Sakai, S. Takemoto, K. Hori, M. Nishimura, H. Ikematsu, T. Yano, H. Yokota

Research output: Chapter in Book/Report/Conference proceedingConference contribution

67 Citations (Scopus)

Abstract

Endoscopic image diagnosis assisted by machine learning is useful for reducing misdetection and interobserver variability. Although many results have been reported, few effective methods are available to automatically detect early gastric cancer. Early gastric cancer have poor morphological features, which implies that automatic detection methods can be extremely difficult to construct. In this study, we proposed a convolutional neural network-based automatic detection scheme to assist the diagnosis of early gastric cancer in endoscopic images. We performed transfer learning using two classes (cancer and normal) of image datasets that have detailed texture information on lesions derived from a small number of annotated images. The accuracy of our trained network was 87.6%, and the sensitivity and specificity were well balanced, which is important for future practical use. We also succeeded in presenting a candidate region of early gastric cancer as a heat map of unknown images. The detection accuracy was 82.8%. This means that our proposed scheme may offer substantial assistance to endoscopists in decision making.

Original languageEnglish
Title of host publication40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4138-4141
Number of pages4
ISBN (Electronic)9781538636466
DOIs
Publication statusPublished - Oct 26 2018
Externally publishedYes
Event40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 - Honolulu, United States
Duration: Jul 18 2018Jul 21 2018

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2018-July
ISSN (Print)1557-170X

Conference

Conference40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
Country/TerritoryUnited States
CityHonolulu
Period7/18/187/21/18

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Automatic detection of early gastric cancer in endoscopic images using a transferring convolutional neural network'. Together they form a unique fingerprint.

Cite this