Average Conformation of Branched Chain Lipid PGP-Me That Accounts for the Thermal Stability and High-Salinity Resistance of Archaeal Membranes

Masaki Yamagami, Hiroshi Tsuchikawa, Jin Cui, Yuichi Umegawa, Yusuke Miyazaki, Sangjae Seo, Wataru Shinoda, Michio Murata

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

The average conformation of the methyl-branched chains of archaeal lipid phosphatidyl glycerophosphate methyl ester (PGP-Me) was examined in a hydrated bilayer membrane based on the 2H nuclear magnetic resonance (NMR) of enantioselectively 2H-labeled compounds that were totally synthesized for the first time in this study. The NMR results in combination with molecular dynamics simulations revealed that the PGP-Me chain appeared to exhibit behavior different from that of typical membrane lipids such as dimyristoylphosphatidylcholine (DMPC). The C-C bonds of the PGP-Me chain adopt alternative parallel and tilted orientations to the membrane normal as opposed to a DMPC chain where all of the C-C bonds tilt in the same way on average. This characteristic orientation causes the intertwining of PGP-Me chains, which plays an important role in the excellent thermal and high-salinity stabilities of archaeal lipid bilayers and membrane proteins.

Original languageEnglish
Pages (from-to)3869-3879
Number of pages11
JournalBiochemistry
Volume58
Issue number37
DOIs
Publication statusPublished - Sept 17 2019
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry

Fingerprint

Dive into the research topics of 'Average Conformation of Branched Chain Lipid PGP-Me That Accounts for the Thermal Stability and High-Salinity Resistance of Archaeal Membranes'. Together they form a unique fingerprint.

Cite this