CDK4/6 signaling attenuates the effect of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer

Naofumi Hara, Eiki Ichihara, Hirohisa Kano, Chihiro Ando, Ayako Morita, Tatsuya Nishi, Sachi Okawa, Takamasa Nakasuka, Atsuko Hirabae, Masaya Abe, Noboru Asada, Kiichiro Ninomiya, Go Makimoto, Masanori Fujii, Toshio Kubo, Kadoaki Ohashi, Katsuyuki Hotta, Masahiro Tabata, Yoshinobu Maeda, Katsuyuki Kiura

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Background: Epidermal growth factor receptor (EGFR) mutations, such as exon 19 deletion and exon 21 L858R, are driver oncogenes of non-small cell lung cancer (NSCLC), with EGFR tyrosine kinase inhibitors (TKIs) being effective against EGFR-mutant NSCLC. However, the efficacy of EGFR-TKIs is transient and eventually leads to acquired resistance. Herein, we focused on the significance of cell cycle factors as a mechanism to attenuate the effect of EGFR-TKIs in EGFR-mutant NSCLC before the emergence of acquired resistance. Methods: Using several EGFR-mutant cell lines, we investigated the significance of cell cycle factors to attenuate the effect of EGFR-TKIs in EGFR-mutant NSCLC. Results: In several EGFR-mutant cell lines, certain cancer cells continued to proliferate without EGFR signaling, and the cell cycle regulator retinoblastoma protein (RB) was not completely dephosphorylated. Further inhibition of phosphorylated RB with cyclin-dependent kinase (CDK) 4/6 inhibitors, combined with the EGFR-TKI osimertinib, enhanced G0/G1 cell cycle accumulation and growth inhibition of the EGFRmutant NSCLC in both in vitro and in vivo models. Furthermore, residual RB phosphorylation without EGFR signaling was maintained by extracellular signal-regulated kinase (ERK) signaling, and the ERK inhibition pathway showed further RB dephosphorylation. Conclusions: Our study demonstrated that the CDK4/6-RB signal axis, maintained by the MAPK pathway, attenuates the efficacy of EGFR-TKIs in EGFR-mutant NSCLC, and targeting CDK4/6 enhances this efficacy. Thus, combining CDK4/6 inhibitors and EGFR-TKI could be a novel treatment strategy for TKI-naïve EGFR-mutant NSCLC.

Original languageEnglish
Pages (from-to)2098-2112
Number of pages15
JournalTranslational Lung Cancer Research
Volume12
Issue number10
DOIs
Publication statusPublished - 2023

Keywords

  • CDK4/6 inhibitor
  • Epidermal growth factor receptor (EGFR)
  • cell cycle
  • non-small cell lung cancer (NSCLC)

ASJC Scopus subject areas

  • Oncology

Fingerprint

Dive into the research topics of 'CDK4/6 signaling attenuates the effect of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer'. Together they form a unique fingerprint.

Cite this