Chloride ions evoke taste sensations by binding to the extracellular ligandbinding domain of sweet/umami taste receptors

Nanako Atsumi, Keiko Yasumatsu, Yuriko Takashina, Chiaki Ito, Norihisa Yasui, Robert F. Margolskee, Atsuko Yamashita

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Salt taste sensation is multifaceted: NaCl at low or high concentrations is preferably or aversively perceived through distinct pathways. Cl is thought to participate in taste sensation through an unknown mechanism. Here, we describe Cl ion binding and the response of taste receptor type 1 (T1r), a receptor family composing sweet/umami receptors. The T1r2a/T1r3 heterod-imer from the medaka fish, currently the sole T1r amenable to structural analyses, exhibited a specific Cl binding in the vicinity of the amino-acid-binding site in the ligand-binding domain (LBD) of T1r3, which is likely conserved across species, including human T1r3. The Cl binding induced a conformational change in T1r2a/T1r3LBD at sub-to low-mM concentrations, similar to canonical taste substances. Furthermore, oral Cl application to mice increased impulse frequencies of taste nerves connected to T1r-expressing taste cells and promoted their behavioral preferences attenuated by a T1r-specific blocker or T1r3 knock-out. These results suggest that the Cl evokes taste sensations by binding to T1r, thereby serving as another preferred salt taste pathway at a low concentration.

Original languageEnglish
Article numbere84291
JournaleLife
Volume12
DOIs
Publication statusPublished - 2023

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry,Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Chloride ions evoke taste sensations by binding to the extracellular ligandbinding domain of sweet/umami taste receptors'. Together they form a unique fingerprint.

Cite this