TY - JOUR
T1 - Comparison of 18F-labeled fluoroalkylphosphonium cations with 13N-NH3 for PET myocardial perfusion imaging
AU - Kim, Dong Yeon
AU - Kim, Hyeon Sik
AU - Reder, Sybille
AU - Zheng, Jin Hai
AU - Herz, Michael
AU - Higuchi, Takahiro
AU - Pyo, Ayoung
AU - Bom, Hee Seung
AU - Schwaiger, Markus
AU - Min, Jung Joon
N1 - Publisher Copyright:
© 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
PY - 2015/10/1
Y1 - 2015/10/1
N2 - Despite substantial advances in the diagnosis of cardiovascular disease, there is a need for 18F-labeled myocardial perfusion agents for the diagnosis of ischemic heart disease because current PET tracers for myocardial perfusion imaging have a short half-life that limits their widespread clinical use in PET. Thus, 18F-labeled fluoroalkylphosphonium derivatives (18F-FATPs), including (5-18F-fluoropentyl)triphenylphosphonium cation (18F-FPTP), (6-18F-fluorohexyl)triphenylphosphonium cation (18F-FHTP), and (2-(2-18F-fluoroethoxy)ethyl)triphenylphosphonium cation (18F-FETP), were synthesized. The myocardial extraction and image quality of the 18F-FATPs were compared with those of 13N-NH3 in rat models. Methods: The first-pass extraction fraction (EF) values of the 18F-FATPs (18F-FPTP, 18F-FHTP, 18F-FETP) and 13N-NH3 were measured in isolated rat hearts perfused with the Langendorff method (flow velocities, 0.5, 4.0, 8.0, and 16.0 mL/min). Normal and myocardial infarction rats were imaged with small-animal PET after intravenous injection of 37 MBq of 18F-FATPs and 13N-NH3. To determine pharmacokinetics, a region of interest was drawn around the heart, and time-activity curves of the 18F-FATPs and 13N-NH3 were generated to obtain the counts per pixel per second. Defect size was analyzed on the basis of polar map images of 18F-FATPs and 13N-NH3. Results: The EF values of 18F-FATPs and 13N-NH3 were comparable at low flow velocity (0.5mL/min), whereas at higher flows EF values of 18F-FATPs were significantly higher than those of 13N-NH3 (4.0, 8.0, and 16.0 mL/min, P, 0.05). Myocardium-to-liver ratios of 18F-FPTP, 18F-FHTP, 18F-FETP, and 13N-NH3 were 2.10 ± 0.30, 4.36 ± 0.20, 3.88 ± 1.03, and 0.70 ± 0.09, respectively, 10 min after injection, whereas myocardium-to-lung ratios were 5.00 ± 0.25, 4.33 ± 0.20, 7.98 ± 1.23, and 2.26 ± 0.14, respectively. Although 18F-FATPs and 13N-NH3 sharply delineated myocardial perfusion defects, defect size on the 13N-NH3 images was significantly smaller than on the 18F-FATP images soon after tracer injection (0-10min, P 5 0.027). Conclusion: 18F-FATPs exhibit higher EF values and more rapid clearance from the liver and lung than 13N-NH3 in normal rats, which led to excellent image quality in a rat model of coronary occlusion. Therefore, 18FFATPs are promising new PET radiopharmaceuticals for myocardial perfusion imaging.
AB - Despite substantial advances in the diagnosis of cardiovascular disease, there is a need for 18F-labeled myocardial perfusion agents for the diagnosis of ischemic heart disease because current PET tracers for myocardial perfusion imaging have a short half-life that limits their widespread clinical use in PET. Thus, 18F-labeled fluoroalkylphosphonium derivatives (18F-FATPs), including (5-18F-fluoropentyl)triphenylphosphonium cation (18F-FPTP), (6-18F-fluorohexyl)triphenylphosphonium cation (18F-FHTP), and (2-(2-18F-fluoroethoxy)ethyl)triphenylphosphonium cation (18F-FETP), were synthesized. The myocardial extraction and image quality of the 18F-FATPs were compared with those of 13N-NH3 in rat models. Methods: The first-pass extraction fraction (EF) values of the 18F-FATPs (18F-FPTP, 18F-FHTP, 18F-FETP) and 13N-NH3 were measured in isolated rat hearts perfused with the Langendorff method (flow velocities, 0.5, 4.0, 8.0, and 16.0 mL/min). Normal and myocardial infarction rats were imaged with small-animal PET after intravenous injection of 37 MBq of 18F-FATPs and 13N-NH3. To determine pharmacokinetics, a region of interest was drawn around the heart, and time-activity curves of the 18F-FATPs and 13N-NH3 were generated to obtain the counts per pixel per second. Defect size was analyzed on the basis of polar map images of 18F-FATPs and 13N-NH3. Results: The EF values of 18F-FATPs and 13N-NH3 were comparable at low flow velocity (0.5mL/min), whereas at higher flows EF values of 18F-FATPs were significantly higher than those of 13N-NH3 (4.0, 8.0, and 16.0 mL/min, P, 0.05). Myocardium-to-liver ratios of 18F-FPTP, 18F-FHTP, 18F-FETP, and 13N-NH3 were 2.10 ± 0.30, 4.36 ± 0.20, 3.88 ± 1.03, and 0.70 ± 0.09, respectively, 10 min after injection, whereas myocardium-to-lung ratios were 5.00 ± 0.25, 4.33 ± 0.20, 7.98 ± 1.23, and 2.26 ± 0.14, respectively. Although 18F-FATPs and 13N-NH3 sharply delineated myocardial perfusion defects, defect size on the 13N-NH3 images was significantly smaller than on the 18F-FATP images soon after tracer injection (0-10min, P 5 0.027). Conclusion: 18F-FATPs exhibit higher EF values and more rapid clearance from the liver and lung than 13N-NH3 in normal rats, which led to excellent image quality in a rat model of coronary occlusion. Therefore, 18FFATPs are promising new PET radiopharmaceuticals for myocardial perfusion imaging.
KW - Cardiac PET
KW - F-fluoroalkylphosphonium cations
KW - Firstpass extraction fraction
KW - Myocardial infarction
KW - Perfusion
UR - http://www.scopus.com/inward/record.url?scp=84943149816&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84943149816&partnerID=8YFLogxK
U2 - 10.2967/jnumed.115.156794
DO - 10.2967/jnumed.115.156794
M3 - Article
C2 - 26069304
AN - SCOPUS:84943149816
SN - 0161-5505
VL - 56
SP - 1581
EP - 1586
JO - Journal of Nuclear Medicine
JF - Journal of Nuclear Medicine
IS - 10
ER -