Construction and characterization of a clostripain-like protease-deficient mutant of Clostridium perfringens as a strain for clostridial gene expression

Hiroaki Tanaka, Eiji Tamai, Shigeru Miyata, Yuki Taniguchi, Hirofumi Nariya, Naoya Hatano, Hitoshi Houchi, Akinobu Okabe

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


The inherent difficulty of expressing clostridial AT-rich genes in a heterologous host has limited their biotechnological application. We previously reported a plasmid for high-level expression of clostridial genes in Clostridium perfringens (Takamizawa et al., Protein Expr Purif 36:70-75, 2004). In this study, we examined the extracellular proteases of C. perfringens strain 13. Zymographic analysis and caseinase assaying of a culture supernatant showed that it contained a protease activated by dithiothreitol and Ca2+, suggesting that clostripain-like protease (Clp) is the most likely candidate for the major extracellular protease. Disruption of the clp gene by homologous recombination markedly decreased the level of caseinase activity in the culture supernatant. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the Clp- mutant but not the wild type strain increased the levels of many polypeptides in the culture supernatant after the late exponential growth phase. Such polypeptides included both cytoplasmic and secretory proteins, suggesting proteins secreted or released into the medium were degraded by Clp. To assess the effects of Clp on the productivity and stability of recombinant proteins, 74-kDa NanI sialidase was expressed in the two strains. The mutant strain produced a higher level of NanI activity than the wild type strain. Furthermore, under the conditions where Clp was activated, NanI was degraded easily in the latter culture but not in the former one. These results indicate that the Clp- mutant could serve as a useful strain for efficiently expressing and preparing protease-free clostridial proteins.

Original languageEnglish
Pages (from-to)1063-1071
Number of pages9
JournalApplied Microbiology and Biotechnology
Issue number5
Publication statusPublished - Jan 2008
Externally publishedYes


  • Clostridium perfringens
  • Clostripain
  • Expression system
  • Protease-deficient mutant
  • Thiol-protease

ASJC Scopus subject areas

  • Biotechnology
  • Applied Microbiology and Biotechnology


Dive into the research topics of 'Construction and characterization of a clostripain-like protease-deficient mutant of Clostridium perfringens as a strain for clostridial gene expression'. Together they form a unique fingerprint.

Cite this