Abstract
Glucocorticoid (GC) acts as a modulator of physiological functions in several organs. In the present study, we examined whether GC suppresses luteolysis in bovine corpus luteum (CL). Cortisol (an active GC) reduced the mRNA expression of caspase 8 (CASP8) and caspase 3 (CASP3) and reduced the enzymatic activity of CASP3 and cell death induced by tumor necrosis factor (TNF) and interferon gamma (IFNG) in cultured bovine luteal cells. mRNAs and proteins of GC receptor (NR3C1), 11beta-hydroxysteroid dehydrogenase type 1 (HSD11B1), and HSD11B2 were expressed in CL throughout the estrous cycle. Moreover, the protein expression and the enzymatic activity of HSD11B1 were high at the early and the midluteal stages compared to the regressed luteal stage. These results suggest that cortisol suppresses TNF-IFNG-induced apoptosis in vitro by reducing apoptosis signals via CASP8 and CASP3 in bovine CL and that the local increase in cortisol production resulting from increased HSD11B1 at the early and midluteal stages helps to maintain CL function by suppressing apoptosis of luteal cells.
Original language | English |
---|---|
Pages (from-to) | 888-895 |
Number of pages | 8 |
Journal | Biology of reproduction |
Volume | 78 |
Issue number | 5 |
DOIs | |
Publication status | Published - May 2008 |
Externally published | Yes |
Keywords
- Apoptosis
- Cattle
- Corpus luteum
- Glucocorticoid
- Glucocorticoid receptor
ASJC Scopus subject areas
- Reproductive Medicine
- Cell Biology