Abstract
In the natural aquatic environment, there are various types of biogenic manganese oxide (BMO) precipitates which are produced by manganese oxidizing microorganisms, at ambient temperature, atmosphere and neutral pH. BMO is a very interesting and useful functional material because of its unique property; hollow globule shape formed by nanosheets, large surface area and photocatalytic characteristics. In this study, thermally-processed BMO at 100-1000°C was analyzed by XRD, XANES, SEM, TEM and nitrogen adsorption method to reveal the effects of heat-treatment on its crystal structure, Mn valence state, globule morphology, microstructure, pore size distribution and specific surface area. In the result, morphology of BMO is maintained below 800 °C, while nanosheets composing BMO were changed into nanoparticles at 600 °C. The crystal structure was transformed from birnessite into hausmannite (Mn304) at 600 °C. The specific surface area was increased by heat-treatment between 300 and 500 °C. In cases of artificial manganese oxides, such changes of crystal structure and specific surface area were not observed, and combustion of organic materials produced by microorganisms in BMO probably has a large effect on them.
Original language | English |
---|---|
Pages (from-to) | 92-99 |
Number of pages | 8 |
Journal | Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy |
Volume | 60 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2013 |
Keywords
- Biogenic manganese oxides
- Microorganisms
- Microstructures
- Nano-sheets
- Phase transitions
ASJC Scopus subject areas
- Mechanical Engineering
- Industrial and Manufacturing Engineering
- Metals and Alloys
- Materials Chemistry