TY - JOUR
T1 - Detection of QTLs for cold tolerance of rice cultivar ‘Kuchum’ and effect of QTL pyramiding
AU - Endo, Takashi
AU - Chiba, Bunya
AU - Wagatsuma, Kensuke
AU - Saeki, Kenichi
AU - Ando, Tsuyu
AU - Shomura, Ayahiko
AU - Mizubayashi, Tatsumi
AU - Ueda, Tadamasa
AU - Yamamoto, Toshio
AU - Nishio, Takeshi
N1 - Publisher Copyright:
© 2016, Springer-Verlag Berlin Heidelberg.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - Key message: A QTL for cold tolerance at the booting stage of rice cultivar ‘Kuchum’ was detected and delimited into a 1.36 Mb region, and a cold-tolerant line was developed by QTL pyramiding. Abstract: Low temperature in summer causes pollen sterility in rice, resulting in a serious loss of yield. The second most widely grown rice cultivar in Japan, ‘Hitomebore’, has been developed as a cultivar highly tolerant to low temperature at the booting stage. However, even ‘Hitomebore’ exhibits sterility at a temperature lower than 18.5 °C. Further improvement of cold tolerance of rice is required. In the present study, QTLs for cold tolerance in a Bhutanese rice variety, ‘Kuchum’, were analyzed using backcrossed progenies and a major QTL, named qCT-4, was detected on chromosome 4. Evaluating cold tolerance of seven types of near isogenic lines having ‘Kuchum’ alleles around qCT-4 with a ‘Hitomebore’ genetic background, qCT-4 was delimited to a region of ca. 1.36 Mb between DNA markers 9_1 and 10_13. Homozygous ‘Kuchum’ alleles at qCT-4 showed an effect of increasing seed fertility by ca. 10 % under cold-water treatment. Near isogenic lines of ‘Hitomebore’ having ‘Silewah’ alleles of Ctb1 and Ctb2 and a ‘Hokkai PL9’ allele of qCTB8 did not exhibit higher cold tolerance than that of ‘Hitomebore’. On the other hand, a qLTB3 allele derived from a Chinese cultivar ‘Lijiangxintuanheigu’ increased cold tolerance of ‘Hitomebore’, and pyramiding of the qCT-4 allele and the qLTB3 allele further increased seed fertility under cold-water treatment. Since NILs of ‘Hitomebore’ with the ‘Kuchum’ allele of qCT-4 were highly similar to ‘Hitomebore’ in other agronomic traits, the qCT-4 allele is considered to be useful for developing a cold-tolerant cultivar.
AB - Key message: A QTL for cold tolerance at the booting stage of rice cultivar ‘Kuchum’ was detected and delimited into a 1.36 Mb region, and a cold-tolerant line was developed by QTL pyramiding. Abstract: Low temperature in summer causes pollen sterility in rice, resulting in a serious loss of yield. The second most widely grown rice cultivar in Japan, ‘Hitomebore’, has been developed as a cultivar highly tolerant to low temperature at the booting stage. However, even ‘Hitomebore’ exhibits sterility at a temperature lower than 18.5 °C. Further improvement of cold tolerance of rice is required. In the present study, QTLs for cold tolerance in a Bhutanese rice variety, ‘Kuchum’, were analyzed using backcrossed progenies and a major QTL, named qCT-4, was detected on chromosome 4. Evaluating cold tolerance of seven types of near isogenic lines having ‘Kuchum’ alleles around qCT-4 with a ‘Hitomebore’ genetic background, qCT-4 was delimited to a region of ca. 1.36 Mb between DNA markers 9_1 and 10_13. Homozygous ‘Kuchum’ alleles at qCT-4 showed an effect of increasing seed fertility by ca. 10 % under cold-water treatment. Near isogenic lines of ‘Hitomebore’ having ‘Silewah’ alleles of Ctb1 and Ctb2 and a ‘Hokkai PL9’ allele of qCTB8 did not exhibit higher cold tolerance than that of ‘Hitomebore’. On the other hand, a qLTB3 allele derived from a Chinese cultivar ‘Lijiangxintuanheigu’ increased cold tolerance of ‘Hitomebore’, and pyramiding of the qCT-4 allele and the qLTB3 allele further increased seed fertility under cold-water treatment. Since NILs of ‘Hitomebore’ with the ‘Kuchum’ allele of qCT-4 were highly similar to ‘Hitomebore’ in other agronomic traits, the qCT-4 allele is considered to be useful for developing a cold-tolerant cultivar.
UR - http://www.scopus.com/inward/record.url?scp=84958898350&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84958898350&partnerID=8YFLogxK
U2 - 10.1007/s00122-015-2654-2
DO - 10.1007/s00122-015-2654-2
M3 - Article
C2 - 26747044
AN - SCOPUS:84958898350
SN - 0040-5752
VL - 129
SP - 631
EP - 640
JO - Theoretical and Applied Genetics
JF - Theoretical and Applied Genetics
IS - 3
ER -