Development and application of traffic accident density estimation models using kernel density estimation

Seiji Hashimoto, Syuji Yoshiki, Ryoko Saeki, Yasuhiro Mimura, Ryosuke Ando, Shutaro Nanba

    Research output: Contribution to journalArticlepeer-review

    67 Citations (Scopus)

    Abstract

    Traffic accident frequency has been decreasing in Japan in recent years. Nevertheless, many accidents still occur on residential roads. Area-wide traffic calming measures including Zone 30, which discourages traffic by setting a speed limit of 30 km/h in residential areas, have been implemented. However, no objective implementation method has been established. Development of a model for traffic accident density estimation explained by GIS data can enable the determination of dangerous areas objectively and easily, indicating where area-wide traffic calming can be implemented preferentially. This study examined the relations between traffic accidents and city characteristics, such as population, road factors, and spatial factors. A model was developed to estimate traffic accident density. Kernel density estimation (KDE) techniques were used to assess the relations efficiently. Besides, 16 models were developed by combining accident locations, accident types, and data types. By using them, the applicability of traffic accident density estimation models was examined. Results obtained using Spearman rank correlation show high coefficients between the predicted number and the actual number. The model can indicate the relative accident risk in cities. Results of this study can be used for objective determination of areas where area-wide traffic calming can be implemented preferentially, even if sufficient traffic accident data are not available.

    Original languageEnglish
    Pages (from-to)262-270
    Number of pages9
    JournalJournal of Traffic and Transportation Engineering (English Edition)
    Volume3
    Issue number3
    DOIs
    Publication statusPublished - Jun 1 2016

    Keywords

    • Hotspots
    • Kernel density estimation (KDE)
    • Traffic safety
    • Zone 30

    ASJC Scopus subject areas

    • Civil and Structural Engineering
    • Transportation

    Fingerprint

    Dive into the research topics of 'Development and application of traffic accident density estimation models using kernel density estimation'. Together they form a unique fingerprint.

    Cite this