Dexamethasone induces apoptosis in proliferative chondrocytes through activation of caspases and suppression of the Akt-phosphatidylinositol 3′-kinase signaling pathway

Dionisios Chrysis, Farasat Zaman, Andrei S. Chagin, Masaharu Takigawa, Lars Sävendahl

Research output: Contribution to journalArticlepeer-review

122 Citations (Scopus)

Abstract

Although glucocorticoids are known to induce apoptosis in chondrocytes, the mechanisms for this effect and the potential antiapoptotic role of IGF-I are unknown. To address this, we studied the effects of dexamethasone (Dexa) on apoptosis in the HCS-2/8 chondrocytic cell line. Dexa (25 μM) increased apoptosis (cell death ELISA) by 39% and 45% after 48 and 72 h, respectively (P < 0.01 and P < 0.05, respectively). IGF-I (100 ng/ml) decreased Dexa-induced apoptosis to levels similar to control cells. Apoptosis was associated with cleavage of poly-ADP-ribose polymerase (PARP) and α-fodrin and activation of caspases-8, -9, and -3 (Western), an effect that was counteracted when chondrocytes were cocultured with Dexa + IGF-I. Inhibitors for caspases-8, -9, and -3 (50 μM each) equally suppressed Dexa-induced apoptosis (P < 0.01). Time-response experiments showed that caspase-8 was activated earlier (at 12 h) than caspase-9 (at 36 h). We studied the phosphatidylinositol 3′-kinase (PI3K) pathway to further investigate the mechanisms of Dexa-induced apoptosis. Dexa decreased Akt phosphorylation by 93% (P < 0.001) without affecting total Akt and increased the p85α subunit 4-fold. The Akt inhibitor SH-6 (10 μM) increased apoptosis by 54% (P < 0.001). When combining Dexa with SH-6, apoptosis was not further increased, showing that Dexa-induced apoptosis is mediated through inhibition of the PI3K pathway. Addition of IGF-I to SH-6- or Dexa + SH-6-treated cells decreased apoptosis by 21.2% (P < 0.001) and 20.6% (P < 0.001), respectively. We conclude that Dexa-induced apoptosis is caspase dependent with an early activation of caspase-8. IGF-I can rescue chondrocytes from Dexa-induced apoptosis partially through the activation of other pathways than the PI3K signaling pathway. Based on our in vitro data, we speculate that in vivo treatment with glucocorticoids may diminish longitudinal growth by increasing apoptosis of proliferative growth plate chondrocytes.

Original languageEnglish
Pages (from-to)1391-1397
Number of pages7
JournalEndocrinology
Volume146
Issue number3
DOIs
Publication statusPublished - Mar 2005

ASJC Scopus subject areas

  • Endocrinology

Fingerprint

Dive into the research topics of 'Dexamethasone induces apoptosis in proliferative chondrocytes through activation of caspases and suppression of the Akt-phosphatidylinositol 3′-kinase signaling pathway'. Together they form a unique fingerprint.

Cite this