Abstract
A cysteine-rich metal binding protein MT (metallothionein) (named BmtA) is induced upon exposure to multiple heavy metal ions in the freshwater cyanobacterium Oscillatoria brevis. The SmtB/ArsR family repressor BxmR from O. brevis represses the expression of an operon encoding bmtA and bxmR. In the present study, the expression of bmtA was induced in vivo by diamide, a specific thiol oxidant, in O. brevis cells. In vitro electrophoretic gel mobility shift experiments revealed that the incubation with diamide induces disassembly of the BxmR-bxmR/bmtA operator (O)/promoter (P) complex [multiple resolvable complexes of BxmR with oligonucleotide (named P5) containing a single 12-2-12 inverted repeat derived from the O/P region of bxmR/bmtA]. Thus, the exposure to diamide induces MT mRNA in O. brevis, and this induction is associated with diamide-mediated inhibition of BxmR-P5 complex. BxmR is more sensitive to diamide than to H2O2. Furthermore, pretreatment of O. brevis with Zn decreased intracellular peroxidation products caused by diamide. Thus, these results imply that MT induced by Zn-pretreatment functions to protect O. brevis cells against diamide stress.
Original language | English |
---|---|
Pages (from-to) | 250-256 |
Number of pages | 7 |
Journal | Toxicology Letters |
Volume | 163 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jun 1 2006 |
Keywords
- Cyanobacteria
- Diamide
- Metallothionein (MT)
- Oscillatoria brevis
- Oxidative stress
- Repressor
ASJC Scopus subject areas
- Toxicology