TY - JOUR
T1 - Differentiation-associated Na+-dependent Inorganic Phosphate Cotransporter (DNPI) Is a Vesicular Glutamate Transporter in Endocrine Glutamatergic Systems
AU - Hayashi, Mitsuko
AU - Otsuka, Masato
AU - Morimoto, Riyo
AU - Hirota, Sumiko
AU - Yatsushiro, Shouki
AU - Takeda, Jun
AU - Yamamoto, Akitsugu
AU - Moriyama, Yoshinori
PY - 2001/11/16
Y1 - 2001/11/16
N2 - Vesicular glutamate transporter is present in neuronal synaptic vesicles and endocrine synaptic-like microvesicles and is responsible for vesicular storage of L-glutamate. A brain-specific Na+-dependent inorganic phosphate transporter (BNPI) functions as a vesicular glutamate transporter in synaptic vesicles, and the expression of this BNPI defines the glutamatergic phenotype in the central nervous system (Bellocchio, E. E., Reimer, R. J., Fremeau, R. T., Jr., and Edwards, R. H. (2000) Science 289, 957-960; Takamori, S., Rhee, J. S., Rosenmund, C., and Jahn, R. (2000) Nature 407, 189-194). However, since not all glutamatergic neurons contain BNPI, an additional transporter(s) responsible for vesicular glutamate uptake has been postulated. Here we report that differentiation-associated Na+-dependent inorganic phosphate cotransporter (DNPI), an isoform of BNPI (Aihara, Y., Mashima, H., Onda, H., Hisano, S., Kasuya, H., Hori, T., Yamada, S., Tomura, H., Yamada, Y., Inoue, I., Kojima, I., and Takeda, J. (2000) J. Neurochem. 74, 2622-2625), also transports L-glutamate at the expense of an electrochemical gradient of protons established by the vacuolar proton pump when expressed in COS7 cells. Molecular, biological, and immunohistochemical studies have indicated that besides its presence in neuronal cells DNPI is preferentially expressed in mammalian pinealocytes, αTC6 cells, clonal pancreatic α cells, and α cells of Langerhans islets, these cells being proven to secrete L-glutamate through Ca2+-dependent regulated exocytosis followed by its vesicular storage. Pancreatic polypeptide-secreting F cells of Langerhans islets also expressed DNPI. These results constitute evidence that DNPI functions as another vesicular transporter in glutamatergic endocrine cells as well as in neurons.
AB - Vesicular glutamate transporter is present in neuronal synaptic vesicles and endocrine synaptic-like microvesicles and is responsible for vesicular storage of L-glutamate. A brain-specific Na+-dependent inorganic phosphate transporter (BNPI) functions as a vesicular glutamate transporter in synaptic vesicles, and the expression of this BNPI defines the glutamatergic phenotype in the central nervous system (Bellocchio, E. E., Reimer, R. J., Fremeau, R. T., Jr., and Edwards, R. H. (2000) Science 289, 957-960; Takamori, S., Rhee, J. S., Rosenmund, C., and Jahn, R. (2000) Nature 407, 189-194). However, since not all glutamatergic neurons contain BNPI, an additional transporter(s) responsible for vesicular glutamate uptake has been postulated. Here we report that differentiation-associated Na+-dependent inorganic phosphate cotransporter (DNPI), an isoform of BNPI (Aihara, Y., Mashima, H., Onda, H., Hisano, S., Kasuya, H., Hori, T., Yamada, S., Tomura, H., Yamada, Y., Inoue, I., Kojima, I., and Takeda, J. (2000) J. Neurochem. 74, 2622-2625), also transports L-glutamate at the expense of an electrochemical gradient of protons established by the vacuolar proton pump when expressed in COS7 cells. Molecular, biological, and immunohistochemical studies have indicated that besides its presence in neuronal cells DNPI is preferentially expressed in mammalian pinealocytes, αTC6 cells, clonal pancreatic α cells, and α cells of Langerhans islets, these cells being proven to secrete L-glutamate through Ca2+-dependent regulated exocytosis followed by its vesicular storage. Pancreatic polypeptide-secreting F cells of Langerhans islets also expressed DNPI. These results constitute evidence that DNPI functions as another vesicular transporter in glutamatergic endocrine cells as well as in neurons.
UR - http://www.scopus.com/inward/record.url?scp=0035900698&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035900698&partnerID=8YFLogxK
U2 - 10.1074/jbc.M106244200
DO - 10.1074/jbc.M106244200
M3 - Article
C2 - 11551935
AN - SCOPUS:0035900698
SN - 0021-9258
VL - 276
SP - 43400
EP - 43406
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 46
ER -