TY - JOUR
T1 - Directional cell expansion requires NIMA-related kinase 6 (NEK6)-mediated cortical microtubule destabilization
AU - Takatani, Shogo
AU - Ozawa, Shinichiro
AU - Yagi, Noriyoshi
AU - Hotta, Takashi
AU - Hashimoto, Takashi
AU - Takahashi, Yuichiro
AU - Takahashi, Taku
AU - Motose, Hiroyasu
N1 - Funding Information:
We thank Prof. Nam-Hai Chua for pER8, Prof. Tsuyoshi Nakagawa for pGWBs, and ABRC for Arabidopsis seeds and cDNA clones. This work was supported by the grant-in-aids from the Ministry of Education, Culture, Sports, Science and Technology, Japan (KAKENHI Grant Numbers 22770043, 23119513, 25119715, 25440137, 16K07403, 16H01245), Ryobi Teien Memory Foundation, Nakahara Education and Research Support Fund in Okayama University, and the NOVARTIS Foundation (Japan) for the Promotion of Science. S.T. was supported by a Grant-in-Aid for JSPS Research Fellow (KAKENHI Grant Number 16J03501).
Publisher Copyright:
© 2017, The Author(s).
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Plant cortical microtubules align perpendicular to the growth axis to determine the direction of cell growth. However, it remains unclear how plant cells form well-organized cortical microtubule arrays in the absence of a centrosome. In this study, we investigated the functions of Arabidopsis NIMA-related kinase 6 (NEK6), which regulates microtubule organization during anisotropic cell expansion. Quantitative analysis of hypocotyl cell growth in the nek6-1 mutant demonstrated that NEK6 suppresses ectopic outgrowth and promotes cell elongation in different regions of the hypocotyl. Loss of NEK6 function led to excessive microtubule waving and distortion, implying that NEK6 suppresses the aberrant cortical microtubules. Live cell imaging showed that NEK6 localizes to the microtubule lattice and to the shrinking plus and minus ends of microtubules. In agreement with this observation, the induced overexpression of NEK6 reduced and disorganized cortical microtubules and suppressed cell elongation. Furthermore, we identified five phosphorylation sites in β-tubulin that serve as substrates for NEK6 in vitro. Alanine substitution of the phosphorylation site Thr166 promoted incorporation of mutant β-tubulin into microtubules. Taken together, these results suggest that NEK6 promotes directional cell growth through phosphorylation of β-tubulin and the resulting destabilization of cortical microtubules.
AB - Plant cortical microtubules align perpendicular to the growth axis to determine the direction of cell growth. However, it remains unclear how plant cells form well-organized cortical microtubule arrays in the absence of a centrosome. In this study, we investigated the functions of Arabidopsis NIMA-related kinase 6 (NEK6), which regulates microtubule organization during anisotropic cell expansion. Quantitative analysis of hypocotyl cell growth in the nek6-1 mutant demonstrated that NEK6 suppresses ectopic outgrowth and promotes cell elongation in different regions of the hypocotyl. Loss of NEK6 function led to excessive microtubule waving and distortion, implying that NEK6 suppresses the aberrant cortical microtubules. Live cell imaging showed that NEK6 localizes to the microtubule lattice and to the shrinking plus and minus ends of microtubules. In agreement with this observation, the induced overexpression of NEK6 reduced and disorganized cortical microtubules and suppressed cell elongation. Furthermore, we identified five phosphorylation sites in β-tubulin that serve as substrates for NEK6 in vitro. Alanine substitution of the phosphorylation site Thr166 promoted incorporation of mutant β-tubulin into microtubules. Taken together, these results suggest that NEK6 promotes directional cell growth through phosphorylation of β-tubulin and the resulting destabilization of cortical microtubules.
UR - http://www.scopus.com/inward/record.url?scp=85040692601&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85040692601&partnerID=8YFLogxK
U2 - 10.1038/s41598-017-08453-5
DO - 10.1038/s41598-017-08453-5
M3 - Article
C2 - 28798328
AN - SCOPUS:85040692601
SN - 2045-2322
VL - 7
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 7826
ER -