TY - JOUR
T1 - E. coli mismatch repair enhances AT-to-GC mutagenesis caused by alkylating agents
AU - Nakano, Kota
AU - Yamada, Yoko
AU - Takahashi, Eizo
AU - Arimoto, Sakae
AU - Okamoto, Keinosuke
AU - Negishi, Kazuo
AU - Negishi, Tomoe
N1 - Funding Information:
This work was supported by a Grant-in-Aid for Challenging Exploratory Research (25670064) from the Japan Society for the Promotion of Science.
Publisher Copyright:
© 2017 Elsevier B.V.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - Alkylating agents are known to induce the formation of O6-alkylguanine (O6-alkG) and O4-alkylthymine (O4-alkT) in DNA. These lesions have been widely investigated as major sources of mutations. We previously showed that mismatch repair (MMR) facilitates the suppression of GC-to-AT mutations caused by O6-methylguanine more efficiently than the suppression of GC-to-AT mutations caused by O6-ethylguanine. However, the manner by which O4-alkyT lesions are repaired remains unclear. In the present study, we investigated the repair pathway involved in the repair of O4-alkT. The E. coli CC106 strain, which harbors Δprolac in its genomic DNA and carries the F'CC106 episome, can be used to detect AT-to-GC reverse-mutation of the gene encoding β-galactosidase. Such AT-to-GC mutations should be induced through the formation of O4-alkT at AT base pairs. As expected, an O6-alkylguanine-DNA alkyltransferase (AGT) -deficient CC106 strain, which is defective in both ada and agt genes, exhibited elevated mutant frequencies in the presence of methylating agents and ethylating agents. However, in the UvrA-deficient strain, the methylating agents were less mutagenic than in wild-type, while ethylating agents were more mutagenic than in wild-type, as observed with agents that induce O6-alkylguanine modifications. Unexpectedly, the mutant frequencies decreased in a MutS-deficient strain, and a similar tendency was observed in MutL- or MutH-deficient strains. Thus, MMR appears to promote mutation at AT base pairs. Similar results were obtained in experiments employing double-mutant strains harboring defects in both MMR and AGT, or MMR and NER. E. coli MMR enhances AT-to-GC mutagenesis, such as that caused by O4-alkylthymine. We hypothesize that the MutS protein recognizes the O4-alkT:A base pair more efficiently than O4-alkT:G. Such a distinction would result in misincorporation of G at the O4-alkT site, followed by higher mutation frequencies in wild-type cells, which have MutS protein, compared to MMR-deficient strains.
AB - Alkylating agents are known to induce the formation of O6-alkylguanine (O6-alkG) and O4-alkylthymine (O4-alkT) in DNA. These lesions have been widely investigated as major sources of mutations. We previously showed that mismatch repair (MMR) facilitates the suppression of GC-to-AT mutations caused by O6-methylguanine more efficiently than the suppression of GC-to-AT mutations caused by O6-ethylguanine. However, the manner by which O4-alkyT lesions are repaired remains unclear. In the present study, we investigated the repair pathway involved in the repair of O4-alkT. The E. coli CC106 strain, which harbors Δprolac in its genomic DNA and carries the F'CC106 episome, can be used to detect AT-to-GC reverse-mutation of the gene encoding β-galactosidase. Such AT-to-GC mutations should be induced through the formation of O4-alkT at AT base pairs. As expected, an O6-alkylguanine-DNA alkyltransferase (AGT) -deficient CC106 strain, which is defective in both ada and agt genes, exhibited elevated mutant frequencies in the presence of methylating agents and ethylating agents. However, in the UvrA-deficient strain, the methylating agents were less mutagenic than in wild-type, while ethylating agents were more mutagenic than in wild-type, as observed with agents that induce O6-alkylguanine modifications. Unexpectedly, the mutant frequencies decreased in a MutS-deficient strain, and a similar tendency was observed in MutL- or MutH-deficient strains. Thus, MMR appears to promote mutation at AT base pairs. Similar results were obtained in experiments employing double-mutant strains harboring defects in both MMR and AGT, or MMR and NER. E. coli MMR enhances AT-to-GC mutagenesis, such as that caused by O4-alkylthymine. We hypothesize that the MutS protein recognizes the O4-alkT:A base pair more efficiently than O4-alkT:G. Such a distinction would result in misincorporation of G at the O4-alkT site, followed by higher mutation frequencies in wild-type cells, which have MutS protein, compared to MMR-deficient strains.
KW - E. coli
KW - Mismatch repair (MMR)
KW - Mutagenesis
KW - Mutagenic repair
KW - Nucleotide excision repair (NER)
KW - O-alkylguanine-DNA alkyltransferase (AGT)
KW - O-alkylthymine
UR - http://www.scopus.com/inward/record.url?scp=85013636802&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013636802&partnerID=8YFLogxK
U2 - 10.1016/j.mrgentox.2017.02.001
DO - 10.1016/j.mrgentox.2017.02.001
M3 - Article
C2 - 28283089
AN - SCOPUS:85013636802
SN - 1383-5718
VL - 815
SP - 22
EP - 27
JO - Mutation Research - Genetic Toxicology and Environmental Mutagenesis
JF - Mutation Research - Genetic Toxicology and Environmental Mutagenesis
ER -