TY - JOUR
T1 - Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits
AU - Djokic, Tara
AU - VanKranendonk, Martin J.
AU - Campbel, Kathleen A.
AU - Walter, Malcolm R.
AU - Ward, Colin R.
N1 - Funding Information:
Many thanks to: J. Reinter for discussion and assistance with Raman spectroscopic data; C. Marjo for assistance with Raman spectroscopic data; K. Privat for assistance with SEM-EDS data and the electron microscope unit, UNSW. Research support provided by the Australian Centre for Astrobiology and School of Biological, Earth and Environmental Sciences at the University of New South Wales, the Sloan Foundation and the ARC Centre for excellence Core to Crust Fluid Systems. Phanerozoic hot spring comparative studies were supported by funding to K.A.C. from the New Zealand government (RSNZ Marsden Fund and Ministry of Business, Innovation and Employment) and the National Geographic Society. Gigapan image generated by Ken Williford and the abcLab, Jet Propulsion Laboratory, California Institute of Technology. Kind hospitality in the field was provided by Faye and Geoff Myers, and Haoma Mining.
Publisher Copyright:
© 2017 Author.
PY - 2017
Y1 - 2017
N2 - The ca. 3.48 Ga Dresser Formation, Pilbara Craton, Western Australia, is well known for hosting some of Earth's earliest convincing evidence of life (stromatolites, fractionated sulfur/carbon isotopes, microfossils) within a dynamic, low-eruptive volcanic caldera affected by voluminous hydrothermal fluid circulation. However, missing from the caldera model were surface manifestations of the volcanic-hydrothermal system (hot springs, geysers) and their unequivocal link with life. Here we present new discoveries of hot spring deposits including geyserite, sinter terracettes and mineralized remnants of hot spring pools/vents, all of which preserve a suite of microbial biosignatures indicative of the earliest life on land. These include stromatolites, newly observed microbial palisade fabric and gas bubbles preserved in inferred mineralized, exopolymeric substance. These findings extend the known geological record of inhabited terrestrial hot springs on Earth by ∼3 billion years and offer an analogue in the search for potential fossil life in ancient Martian hot springs.
AB - The ca. 3.48 Ga Dresser Formation, Pilbara Craton, Western Australia, is well known for hosting some of Earth's earliest convincing evidence of life (stromatolites, fractionated sulfur/carbon isotopes, microfossils) within a dynamic, low-eruptive volcanic caldera affected by voluminous hydrothermal fluid circulation. However, missing from the caldera model were surface manifestations of the volcanic-hydrothermal system (hot springs, geysers) and their unequivocal link with life. Here we present new discoveries of hot spring deposits including geyserite, sinter terracettes and mineralized remnants of hot spring pools/vents, all of which preserve a suite of microbial biosignatures indicative of the earliest life on land. These include stromatolites, newly observed microbial palisade fabric and gas bubbles preserved in inferred mineralized, exopolymeric substance. These findings extend the known geological record of inhabited terrestrial hot springs on Earth by ∼3 billion years and offer an analogue in the search for potential fossil life in ancient Martian hot springs.
UR - http://www.scopus.com/inward/record.url?scp=85034237532&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85034237532&partnerID=8YFLogxK
U2 - 10.1038/ncomms15263
DO - 10.1038/ncomms15263
M3 - Article
C2 - 28486437
AN - SCOPUS:85034237532
SN - 2041-1723
VL - 8
JO - Nature communications
JF - Nature communications
M1 - 15263
ER -