TY - JOUR
T1 - EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells.
AU - Watanabe, Kenta
AU - Tachibana, Masato
AU - Kim, Suk
AU - Watarai, Masahisa
N1 - Funding Information:
We thank Dr. Alexander Cox for critical reading of the manuscript. This work was supported, in part, by grants from Program for Japan's Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN), and grants from the Institute for Fermentation, Osaka.
PY - 2009
Y1 - 2009
N2 - BACKGROUND: The uptake of abortion-inducing pathogens by trophoblast giant (TG) cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70) contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. METHODS: Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR) domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. RESULTS: The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. CONCLUSIONS: Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.
AB - BACKGROUND: The uptake of abortion-inducing pathogens by trophoblast giant (TG) cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70) contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. METHODS: Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR) domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. RESULTS: The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. CONCLUSIONS: Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.
UR - http://www.scopus.com/inward/record.url?scp=76249132463&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=76249132463&partnerID=8YFLogxK
U2 - 10.1186/1423-0127-16-113
DO - 10.1186/1423-0127-16-113
M3 - Article
C2 - 20003465
AN - SCOPUS:76249132463
SN - 1021-7770
VL - 16
SP - 113
JO - Journal of biomedical science
JF - Journal of biomedical science
ER -