Effect of glutaraldehyde on properties of membranes prepared from fish scale collagen

Zhefeng Xu, Toshiyuki Ikoma, Tomohiko Yoshioka, Motohiro Tagaya, Satoshi Motozuka, Rena Matsumoto, Toshimasa Uemura, Junzo Tanaka

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)


Collagen fibril membranes (CFMs) with a high mechanical property were fabricated with a lateral face evaporation method, in which type I atelocollagen extracted from tilapia scales was used. The density and thickness of the CFM obtained were 0.51 ± 0.04 mg/cm 3 and 50 ± 5 μm. The collagen fibrils in the CFM had a similar periodic stripped pattern of 67 nm with native collagen fibrils. The CFM was crosslinked in gaseous glutaraldehyde for different duration in order to increase the mechanical property. The crosslinking degrees of the CFMs analyzed by free amino groups gradually increased to 70.3 % against the exposure duration until 6 hours, and reached a plateau. The denaturation temperatures of the CFMs with the crosslinking degrees at 20.4 % to 43% were linearly increased from 49°C to 75°C. The tensile strength of the CFMs was slightly improved until the crosslinking degree at 33.3 % and then the tensile strength rapidly increased to be 68 MPa. It was suggested that a percolation phenomenon took place in the CFMs by crosslinking of collagen fibrils with polymerized GA molecules.

Original languageEnglish
Title of host publicationGels and Biomedical Materials
Number of pages6
Publication statusPublished - 2012
Externally publishedYes
Event2011 MRS Fall Meeting - Boston, MA, United States
Duration: Nov 28 2011Dec 2 2011

Publication series

NameMaterials Research Society Symposium Proceedings
ISSN (Print)0272-9172


Other2011 MRS Fall Meeting
Country/TerritoryUnited States
CityBoston, MA

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Effect of glutaraldehyde on properties of membranes prepared from fish scale collagen'. Together they form a unique fingerprint.

Cite this