TY - JOUR
T1 - Effect of minocycline on induced glial activation by experimental tooth movement
AU - Deguchi, Toru
AU - Adachi, Rie
AU - Kamioka, Hiroshi
AU - Kim, Do Gyoon
AU - Fields, Henry W.
AU - Takano-Yamamoto, Teruko
AU - Ichikawa, Hiroyuki
AU - Yamashiro, Takashi
N1 - Publisher Copyright:
© 2016 American Association of Orthodontists.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - Introduction Orthodontic tooth movement causes pain to a patient. Glial cells are nonneuronal cells in the central nervous system and are implicated in various types of pain. In this study, we assessed glial activation responses after experimental tooth movement using immunocytochemical detection of anti-CD11b (OX42) and glial fibrillary acidic protein immunoreactivity to illustrate the microglial and astrocytes response, respectively. In addition, the effect of minocycline in reducing pain during tooth movement was also investigated. Methods Fifty-five Sprague Dawley rats with and without administration of minocycline after 1, 3, 5, 7, and 14 days (n = 5, for each) of tooth movement were used. Immunohistochemistry for microglia (OX42) and astrocyte (glial fibrillary acidic protein) were performed at the medullary dorsal horn (trigeminal subnucleus caudalis). Three-dimensional quantitative analysis was performed with a confocal fluorescence microscope and a software program. Results There was a significant increase in the OX42 and glial fibrillary acidic protein immunoreactivity in response to tooth movement in the medullary dorsal horn. Furthermore, systematic administration of minocycline, a selective inhibitor of microglial activation, significantly attenuated the nociceptive c-Fos expression in the medullary dorsal horn that was induced by experimental tooth movement. Conclusions These data indicate the possible importance of microglial activation in the development of orthodontic pain. This is also the first report on the systematic application of minocycline.
AB - Introduction Orthodontic tooth movement causes pain to a patient. Glial cells are nonneuronal cells in the central nervous system and are implicated in various types of pain. In this study, we assessed glial activation responses after experimental tooth movement using immunocytochemical detection of anti-CD11b (OX42) and glial fibrillary acidic protein immunoreactivity to illustrate the microglial and astrocytes response, respectively. In addition, the effect of minocycline in reducing pain during tooth movement was also investigated. Methods Fifty-five Sprague Dawley rats with and without administration of minocycline after 1, 3, 5, 7, and 14 days (n = 5, for each) of tooth movement were used. Immunohistochemistry for microglia (OX42) and astrocyte (glial fibrillary acidic protein) were performed at the medullary dorsal horn (trigeminal subnucleus caudalis). Three-dimensional quantitative analysis was performed with a confocal fluorescence microscope and a software program. Results There was a significant increase in the OX42 and glial fibrillary acidic protein immunoreactivity in response to tooth movement in the medullary dorsal horn. Furthermore, systematic administration of minocycline, a selective inhibitor of microglial activation, significantly attenuated the nociceptive c-Fos expression in the medullary dorsal horn that was induced by experimental tooth movement. Conclusions These data indicate the possible importance of microglial activation in the development of orthodontic pain. This is also the first report on the systematic application of minocycline.
UR - http://www.scopus.com/inward/record.url?scp=84971242759&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84971242759&partnerID=8YFLogxK
U2 - 10.1016/j.ajodo.2015.11.030
DO - 10.1016/j.ajodo.2015.11.030
M3 - Article
C2 - 27241999
AN - SCOPUS:84971242759
SN - 0889-5406
VL - 149
SP - 881
EP - 888
JO - American Journal of Orthodontics and Dentofacial Orthopedics
JF - American Journal of Orthodontics and Dentofacial Orthopedics
IS - 6
ER -