Abstract
SiO2-TiO2/montmorillonite composites with varying SiO2/TiO2 molar ratios were synthesized and the effect of the SiO2/TiO2 ratio on the solid acidity of the resulting composites was investigated. Four composites with SiO2/TiO2 molar ratios of 0, 0.1, 1 and 10 were synthesized by the reaction of colloidal SiO2-TiO2 particles prepared from alkoxides with sodium-montmorillonite at room temperature. The composites showed slight expansion and broadening of the XRD basal reflection, corresponding to the intercalation of fine colloidal SiO2-TiO2 particles into the montmorillonite sheets and incomplete intercalation to form disordered stacking of exfoliated montmorillonite and colloidal SiO2-TiO2 particles. The colloidal particles crystallized to anatase in the low SiO2/TiO2 composites but remained amorphous in the high SiO2/TiO2 composites. The specific surface areas (SBET) of the composites measured by N2 adsorption ranged from 250 to 370 m2/g, considerably greater than in montmorillonite (6 m2/g). The pore size increased with decreasing SiO2/TiO2 molar ratio of the composites. The NH3-TPD spectra of the composites consisted of overlapping peaks, corresponded to temperatures of about 190 and 290 °C. The amounts of solid acid obtained from NH3-TPD were 186-338 μmol/g in the composites; these values are higher than in the commercial catalyst K10 (85 μmol/g), which is synthesized by acid-treatment of montmorillonite. The present sample with SiO2/TiO2 = 0.1 showed the highest amount of acid, about four times higher than K10.
Original language | English |
---|---|
Pages (from-to) | 1906-1909 |
Number of pages | 4 |
Journal | Materials Research Bulletin |
Volume | 44 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 2009 |
Externally published | Yes |
Keywords
- A. Composites
- A. Layered compounds
- B. Intercalation reactions
- D. Surface properties
ASJC Scopus subject areas
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering