TY - JOUR
T1 - Effect of UDP-glucuronosyltransferase 2B15 polymorphism on bisphenol A glucuronidation
AU - Hanioka, Nobumitsu
AU - Oka, Hiroyuki
AU - Nagaoka, Kenjiro
AU - Ikushiro, Shinichi
AU - Narimatsu, Shizuo
PY - 2011/11
Y1 - 2011/11
N2 - Bisphenol A (BPA) is one of a number of potential endocrine-disrupting chemicals, which are metabolized mainly by UDP-glucuronosyltransferase 2B15 (UGT2B15) in humans. Six UGT2B15 allelic variants (UGT2B15*2, UGT2B15*3, UGT2B15*4, UGT2B15*5, UGT2B15*6, and UGT2B15*7; wild-type, UGT2B15*1) with amino acid substitutions have been found in Caucasian, African-American, Hispanic, and Oriental populations to date. In this study, the effects of amino acid substitutions in UGT2B15 on BPA glucuronidation were studied using recombinant UGT2B15 enzymes of wild-type (UGT2B15.1) and all identified variants (UGT2B15.2, UGT2B15.3, UGT2B15.4, UGT2B15.5, UGT2B15.6, and UGT2B15.7) expressed in insect (Sf9) cells. The K m, V max, and CL int values of UGT2B15.1 for BPA glucuronidation were 3.9 μM, 650 pmol/min/mg protein, and 170 μL/min/mg protein, respectively. Although there is no significant difference in the K m value between wild-type and any variant UGT2B15, the V max and CL int values of UGT2B15 variants having D85Y substitution were markedly reduced to 14 and 10% for UGT2B15.2, and 4.3 and 3.9% for UGT2B15.5 compared with those of UGT2B15.1, respectively. However, the K m, V max, and CL int values of UGT2B15.3, UGT2B15.4, UGT2B15.6, and UGT2B15.7 having L86S, T352I, and/or K523T substitution(s) for BPA glucuronidation were comparable to those of UGT2B15.1. These findings suggest that D85Y substitution in UGT2B15 decreases enzymatic function and that the polymorphic alleles of UGT2B15 are closely associated with variations in the metabolism and toxicity of BPA. The information gained in this study should help with in vivo extrapolation to assess the toxicity of endocrine-disrupting chemicals.
AB - Bisphenol A (BPA) is one of a number of potential endocrine-disrupting chemicals, which are metabolized mainly by UDP-glucuronosyltransferase 2B15 (UGT2B15) in humans. Six UGT2B15 allelic variants (UGT2B15*2, UGT2B15*3, UGT2B15*4, UGT2B15*5, UGT2B15*6, and UGT2B15*7; wild-type, UGT2B15*1) with amino acid substitutions have been found in Caucasian, African-American, Hispanic, and Oriental populations to date. In this study, the effects of amino acid substitutions in UGT2B15 on BPA glucuronidation were studied using recombinant UGT2B15 enzymes of wild-type (UGT2B15.1) and all identified variants (UGT2B15.2, UGT2B15.3, UGT2B15.4, UGT2B15.5, UGT2B15.6, and UGT2B15.7) expressed in insect (Sf9) cells. The K m, V max, and CL int values of UGT2B15.1 for BPA glucuronidation were 3.9 μM, 650 pmol/min/mg protein, and 170 μL/min/mg protein, respectively. Although there is no significant difference in the K m value between wild-type and any variant UGT2B15, the V max and CL int values of UGT2B15 variants having D85Y substitution were markedly reduced to 14 and 10% for UGT2B15.2, and 4.3 and 3.9% for UGT2B15.5 compared with those of UGT2B15.1, respectively. However, the K m, V max, and CL int values of UGT2B15.3, UGT2B15.4, UGT2B15.6, and UGT2B15.7 having L86S, T352I, and/or K523T substitution(s) for BPA glucuronidation were comparable to those of UGT2B15.1. These findings suggest that D85Y substitution in UGT2B15 decreases enzymatic function and that the polymorphic alleles of UGT2B15 are closely associated with variations in the metabolism and toxicity of BPA. The information gained in this study should help with in vivo extrapolation to assess the toxicity of endocrine-disrupting chemicals.
KW - Bisphenol A
KW - Genetic polymorphism
KW - Glucuronidation
KW - UDP-glucuronosyltransferase 2B15 (UGT2B15)
UR - http://www.scopus.com/inward/record.url?scp=80755189043&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80755189043&partnerID=8YFLogxK
U2 - 10.1007/s00204-011-0690-5
DO - 10.1007/s00204-011-0690-5
M3 - Article
C2 - 21404072
AN - SCOPUS:80755189043
SN - 0340-5761
VL - 85
SP - 1373
EP - 1381
JO - Archives of Toxicology
JF - Archives of Toxicology
IS - 11
ER -