TY - JOUR
T1 - Effects of CTGF/Hcs 24, a hypertrophic chondrocyte-specific gene product, on the proliferation and differentiation of osteoblastic cells in vitro
AU - Nishida, Takashi
AU - Nakanishi, Tohru
AU - Asano, Masahiro
AU - Shimo, Tsuyoshi
AU - Takigawa, Masaharu
PY - 2000
Y1 - 2000
N2 - Connective tissue growth factor/hypertrophic chondrocyte-specific gene product Hcs24 (CTGF/Hcs24) promotes the proliferation and differentiation of chondrocytes and endothelial cells which are involved in endochondral ossification (Shimo et al., 1998, J Biochem 124:130-140; Shimo et al., 1999, J Biochem 126:137-145; Nakanishi et al., 2000, Endocrinology 141:264-273). To further clarify the role of CTGF/Hcs24 in endochondral ossification, here we investigated the effects of CTGF/Hcs24 on the proliferation and differentiation of osteoblastic cell lines in vitro. A binding study using 125I-labeled recombinant CTGF/Hcs24 (rCTGF/Hcs24) disclosed two classes of specific binding sites on a human osteosarcoma cell line, Saos-2. The apparent dissociation constant (Kd) value of each binding site was 17.2 and 391 nM, respectively. A cross-linking study revealed the formation of 125I-rCTGF/Hcs24-receptor complex with an apparent molecular weight of 280 kDa. The intensity of 125>I-rCTGF/Hcs24-receptor complex decreased on the addition of increasing concentrations of unlabeled rCTGF/Hcs24, but not platelet-derived growth factor-BB homodimer or basic fibroblast growth factor. These findings suggest that osteoblastic cells have specific receptor molecules for CTGF/Hcs24. rCTGF/Hcs24 promoted the proliferation of Saos-2 cells and a mouse osteoblast cell line MC3T3-E1 in a dose- and time-dependent manner. rCTGF/Hcs24 also increased mRNA expression of type I collagen, alkaline phosphatase, osteopontin, and osteocalcin in both Saos-2 cells and MC3T3-E1 cells. Moreover, rCTGF/Hcs24 increased alkaline phosphatase activity in both cells. It also stimulated collagen synthesis in MC3T3-E1 cells. Furthermore, rCTGF/Hcs24 stimulated the matrix mineralization on MC3T3-E1 cells and its stimulatory effect was comparable to that of bone morphogenetic protein-2. These findings indicate that CTGF/Hcs24 is a novel, potent stimulator for the proliferation and differentiation of osteoblasts in addition to chondrocytes and endothelial cells. Because of these functions, we are re-defining CTGF/Hcs24 as a major factor to promote endochondral ossification to be called 'ecogenin: endochondral ossification genetic factor.' (C) 2000 Wiley-Liss, Inc.
AB - Connective tissue growth factor/hypertrophic chondrocyte-specific gene product Hcs24 (CTGF/Hcs24) promotes the proliferation and differentiation of chondrocytes and endothelial cells which are involved in endochondral ossification (Shimo et al., 1998, J Biochem 124:130-140; Shimo et al., 1999, J Biochem 126:137-145; Nakanishi et al., 2000, Endocrinology 141:264-273). To further clarify the role of CTGF/Hcs24 in endochondral ossification, here we investigated the effects of CTGF/Hcs24 on the proliferation and differentiation of osteoblastic cell lines in vitro. A binding study using 125I-labeled recombinant CTGF/Hcs24 (rCTGF/Hcs24) disclosed two classes of specific binding sites on a human osteosarcoma cell line, Saos-2. The apparent dissociation constant (Kd) value of each binding site was 17.2 and 391 nM, respectively. A cross-linking study revealed the formation of 125I-rCTGF/Hcs24-receptor complex with an apparent molecular weight of 280 kDa. The intensity of 125>I-rCTGF/Hcs24-receptor complex decreased on the addition of increasing concentrations of unlabeled rCTGF/Hcs24, but not platelet-derived growth factor-BB homodimer or basic fibroblast growth factor. These findings suggest that osteoblastic cells have specific receptor molecules for CTGF/Hcs24. rCTGF/Hcs24 promoted the proliferation of Saos-2 cells and a mouse osteoblast cell line MC3T3-E1 in a dose- and time-dependent manner. rCTGF/Hcs24 also increased mRNA expression of type I collagen, alkaline phosphatase, osteopontin, and osteocalcin in both Saos-2 cells and MC3T3-E1 cells. Moreover, rCTGF/Hcs24 increased alkaline phosphatase activity in both cells. It also stimulated collagen synthesis in MC3T3-E1 cells. Furthermore, rCTGF/Hcs24 stimulated the matrix mineralization on MC3T3-E1 cells and its stimulatory effect was comparable to that of bone morphogenetic protein-2. These findings indicate that CTGF/Hcs24 is a novel, potent stimulator for the proliferation and differentiation of osteoblasts in addition to chondrocytes and endothelial cells. Because of these functions, we are re-defining CTGF/Hcs24 as a major factor to promote endochondral ossification to be called 'ecogenin: endochondral ossification genetic factor.' (C) 2000 Wiley-Liss, Inc.
UR - http://www.scopus.com/inward/record.url?scp=0033623771&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033623771&partnerID=8YFLogxK
U2 - 10.1002/1097-4652(200008)184:2<197::AID-JCP7>3.0.CO;2-R
DO - 10.1002/1097-4652(200008)184:2<197::AID-JCP7>3.0.CO;2-R
M3 - Article
C2 - 10867644
AN - SCOPUS:0033623771
SN - 0021-9541
VL - 184
SP - 197
EP - 206
JO - Journal of Cellular Physiology
JF - Journal of Cellular Physiology
IS - 2
ER -