TY - JOUR
T1 - Effects of ionic surfactants and cyclodextrins on hydride-transfer reaction of l-Benzyl-l,4-dihydronicotinamide with methylene blue
AU - Matsumoto, Takeshi
AU - Liu, Yingjin
AU - Sueishi, Yoshimi
AU - Yamamoto, Shunzo
PY - 2007
Y1 - 2007
N2 - The kinetics of the hydride-transfer reaction between methylene blue (MB+) and 1 -benzyl-1,4-dihydronictinamide (BNAH) were studied in media containing cyclodextrins (β- and γ-CD) and surfactants (sodium dodecyl sulfate (SDS), dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, and hexadecyltrimethylammonium bromide). Cationic surfactants decreased the apparent first-order rate constant (k obsd) above the cmc, while SDS increased kobsd just above the cmc and then decreased kobsd with increasing surfactant concentration. This behavior for cationic surfactants was typical of micellar effects due to a separation of the reactants by the micelles. BNAH associated with micelles, whereas MB+ ions were repelled from the cationic interface of the micelles. Binding of BNAH and MB to the same SDS micelle enhanced the reaction, but dilution of reagents within the micellar interface with the increase in [SDS] caused a decrease in Kobsd. In β-CD-cationic surfactant mixtures, the results were interpreted in terms of the model which takes into account the formation of CD-BNAH, CD-MB+, and CD-surfactant complexes and the association of BNAH with micelles. The decrease in Kobsd with increasing surfactant concentration observed in γ-CD-cationic surfactant mixtures can be explained by the decrease in the concentration of free γ-CD by the formation of 1:1 and 2:1 complexes of surfactant monomer with β-CD.
AB - The kinetics of the hydride-transfer reaction between methylene blue (MB+) and 1 -benzyl-1,4-dihydronictinamide (BNAH) were studied in media containing cyclodextrins (β- and γ-CD) and surfactants (sodium dodecyl sulfate (SDS), dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, and hexadecyltrimethylammonium bromide). Cationic surfactants decreased the apparent first-order rate constant (k obsd) above the cmc, while SDS increased kobsd just above the cmc and then decreased kobsd with increasing surfactant concentration. This behavior for cationic surfactants was typical of micellar effects due to a separation of the reactants by the micelles. BNAH associated with micelles, whereas MB+ ions were repelled from the cationic interface of the micelles. Binding of BNAH and MB to the same SDS micelle enhanced the reaction, but dilution of reagents within the micellar interface with the increase in [SDS] caused a decrease in Kobsd. In β-CD-cationic surfactant mixtures, the results were interpreted in terms of the model which takes into account the formation of CD-BNAH, CD-MB+, and CD-surfactant complexes and the association of BNAH with micelles. The decrease in Kobsd with increasing surfactant concentration observed in γ-CD-cationic surfactant mixtures can be explained by the decrease in the concentration of free γ-CD by the formation of 1:1 and 2:1 complexes of surfactant monomer with β-CD.
UR - http://www.scopus.com/inward/record.url?scp=58149293284&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58149293284&partnerID=8YFLogxK
U2 - 10.1246/bcsj.80.1383
DO - 10.1246/bcsj.80.1383
M3 - Article
AN - SCOPUS:58149293284
SN - 0009-2673
VL - 80
SP - 1383
EP - 1390
JO - Bulletin of the Chemical Society of Japan
JF - Bulletin of the Chemical Society of Japan
IS - 7
ER -