Abstract
We report on the quantitative study of charge-state-dependent local motion of hydrogen around carbon in Si, which was directly probed by measuring the recovery of stress-induced alignment of a hydrogen-carbon complex by means of deep-level transient spectroscopy under uniaxial stress. We have found that hydrogen jumps from a bond-centered site between C and Si atoms to another with an activation energy of 1.33 eV and a frequency factor of (formula presented) in the electron-empty charge state while hydrogen jumps much faster in the electron-occupied charge state with a lower activation energy of 0.55 eV and a smaller frequency factor of (formula presented) We have concluded that the hydrogen-carbon complex captures an electron from the conduction band at its gap state with antibonding character, lowering the barrier and frequency factor for hydrogen motion in the electron-occupied charge state.
Original language | English |
---|---|
Pages (from-to) | 1-4 |
Number of pages | 4 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 65 |
Issue number | 11 |
DOIs | |
Publication status | Published - Jan 1 2002 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics