Energy saving technology

Kazuo Matsuda, Yasuki Kansha, Chihiro Fushimi, Atsushi Tsutsumi, Akira Kishimoto

Research output: Chapter in Book/Report/Conference proceedingChapter

1 Citation (Scopus)

Abstract

This chapter introduces the conventional and latest energy saving technologies for process systems, especially for use in oil refineries and petrochemical plants. One of the most famous energy saving technologies for these processes is a well-known heat recovery technology that uses pinch technology. The hot and cold stream lines can be moved horizontally within the temperature limits in the temperature-heat diagram. Process systems are designed based on this graphical analysis. In contrast, in the latest energy saving technology termed self-heat recuperation technology, the hot stream line is shifted vertically by using the adiabatic compression of the hot stream in the temperature-heat diagram. Thus, the whole process heat can be recirculated into the process without any heat addition, leading to further energy saving in the process systems. In addition, process design methodology based on self-heat recuperation and the overall energy efficiency of the designed process are illustrated using simple thermal and distillation process examples.

Original languageEnglish
Title of host publicationSpringerBriefs in Applied Sciences and Technology
PublisherSpringer Verlag
Pages3-14
Number of pages12
Edition9781447142065
DOIs
Publication statusPublished - Jan 1 2013
Externally publishedYes

Publication series

NameSpringerBriefs in Applied Sciences and Technology
Number9781447142065
ISSN (Print)2191-530X
ISSN (Electronic)2191-5318

Keywords

  • Energy saving
  • Exergy
  • Pinch technology
  • Process design
  • Process system
  • Self-heat recuperation technology

ASJC Scopus subject areas

  • Biotechnology
  • Chemical Engineering(all)
  • Mathematics(all)
  • Materials Science(all)
  • Energy Engineering and Power Technology
  • Engineering(all)

Fingerprint

Dive into the research topics of 'Energy saving technology'. Together they form a unique fingerprint.

Cite this