TY - GEN
T1 - Enhancement of IEEE 802.11 and network coding for single-relay multi-user wireless networks
AU - Umehara, Daisuke
AU - Huang, Chun Hsiang
AU - Denno, Satoshi
AU - Morikura, Masahiro
AU - Sugiyama, Takatoshi
PY - 2010/12/1
Y1 - 2010/12/1
N2 - Network coding is a promising technique for improving system performance in wireless multihop networks. In this paper, the throughput and fairness in single-relay multiuser wireless networks are evaluated. The carrier sense multiple access with collision avoidance (CSMA/CA) protocol and network coding are used in the medium access control (MAC) sublayer in such networks. The fairness of wireless medium access among stations (STAs), the access point (AP), and the relay station (RS) results in asymmetric bidirectional flows via the RS; as a result the wireless throughput decreases substantially. To overcome this problem, an autonomous optimization of minimum contention window size is developed for CSMA/CA and network coding to assign appropriate transmission opportunities to both the AP and RS. By optimizing the minimum contention window size according to the number of STAs, the wireless throughput in single-relay multi-user networks can be improved and the fairness between bidirectional flows via the RS can be achieved. Numerical analysis and computer simulations enable us to evaluate the performances of CSMA/CA and network coding in single-relay multi-user wireless networks.
AB - Network coding is a promising technique for improving system performance in wireless multihop networks. In this paper, the throughput and fairness in single-relay multiuser wireless networks are evaluated. The carrier sense multiple access with collision avoidance (CSMA/CA) protocol and network coding are used in the medium access control (MAC) sublayer in such networks. The fairness of wireless medium access among stations (STAs), the access point (AP), and the relay station (RS) results in asymmetric bidirectional flows via the RS; as a result the wireless throughput decreases substantially. To overcome this problem, an autonomous optimization of minimum contention window size is developed for CSMA/CA and network coding to assign appropriate transmission opportunities to both the AP and RS. By optimizing the minimum contention window size according to the number of STAs, the wireless throughput in single-relay multi-user networks can be improved and the fairness between bidirectional flows via the RS can be achieved. Numerical analysis and computer simulations enable us to evaluate the performances of CSMA/CA and network coding in single-relay multi-user wireless networks.
UR - http://www.scopus.com/inward/record.url?scp=79952509821&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79952509821&partnerID=8YFLogxK
U2 - 10.1109/ICSPCS.2010.5709703
DO - 10.1109/ICSPCS.2010.5709703
M3 - Conference contribution
AN - SCOPUS:79952509821
SN - 9781424479078
T3 - 4th International Conference on Signal Processing and Communication Systems, ICSPCS'2010 - Proceedings
BT - 4th International Conference on Signal Processing and Communication Systems, ICSPCS'2010 - Proceedings
T2 - 4th International Conference on Signal Processing and Communication Systems, ICSPCS'2010
Y2 - 13 December 2010 through 15 December 2010
ER -