TY - JOUR
T1 - Equivariant class group. II. Enriched descent theorem
AU - Hashimoto, Mitsuyasu
N1 - Publisher Copyright:
© 2017, Copyright © Taylor & Francis.
PY - 2017/4/3
Y1 - 2017/4/3
N2 - We prove a version of Grothendieck’s descent theorem on an ‘enriched’ principal fiber bundle, a principal fiber bundle with an action of a larger group scheme. Using this, we prove the isomorphisms of the equivariant Picard and the class groups arising from such a principal fiber bundle.
AB - We prove a version of Grothendieck’s descent theorem on an ‘enriched’ principal fiber bundle, a principal fiber bundle with an action of a larger group scheme. Using this, we prove the isomorphisms of the equivariant Picard and the class groups arising from such a principal fiber bundle.
KW - Class group
KW - Picard group
KW - descent theory
KW - principal fiber bundle
UR - http://www.scopus.com/inward/record.url?scp=84999036872&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84999036872&partnerID=8YFLogxK
U2 - 10.1080/00927872.2016.1178270
DO - 10.1080/00927872.2016.1178270
M3 - Article
AN - SCOPUS:84999036872
SN - 0092-7872
VL - 45
SP - 1509
EP - 1532
JO - Communications in Algebra
JF - Communications in Algebra
IS - 4
ER -