Evaluation of strength of soft ground improved by vacuum consolidation

T. Shibata, S. Nishimura, M. Fujii, A. Murakami

Research output: Contribution to journalArticlepeer-review

Abstract

This paper presents the numerical evaluation of the strength and stability of a ground improved via vacuum consolidation combined with a preloading embankment. To assess the stability of soft grounds, the undrained shear strength is definitely required. A numerical analysis is desirable for predicting the strength of the improved ground, and the elasto-plastic FEM for soil-water coupled problems, incorporating the SYS Cam-clay model, is adopted in two dimensions. The compression index of clay and the coefficient of permeability of organic soil, which are the primary factors for evaluating the ground behavior, are identified through an inverse analysis from the measured settlements. As the inverse approach, the particle filter is employed to account for the strong nonlinearity of the ground behavior. A stability analysis of the slip surface method is performed based on the evaluated undrained shear strength to assess the effect of the ground improvement on the construction of earth structures. The results show the validity of the ground improvement using vacuum consolidation with a preloading embankment.

Original languageEnglish
Pages (from-to)95-102
Number of pages8
JournalGeotechnical Engineering
Volume46
Issue number1
Publication statusPublished - Mar 1 2015

Keywords

  • Stability analysis
  • Undrained shear strength
  • Vacuum consolidation

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Geotechnical Engineering and Engineering Geology

Fingerprint

Dive into the research topics of 'Evaluation of strength of soft ground improved by vacuum consolidation'. Together they form a unique fingerprint.

Cite this