TY - JOUR
T1 - Expression and ion transport activity of rice OsHKT1;1 variants
AU - Imran,
AU - Horie, Tomoaki
AU - Katsuhara, Maki
N1 - Funding Information:
Funding: This work was supported by Ohara Foundation for Agricultural Science, (to M.K.), and by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) as part of the Joint Research Program implemented at the Institute of Plant Science and Resources, Okayama University in Japan (2918, 3019 to T.H).
Funding Information:
This work was supported by Ohara Foundation for Agricultural Science, (to M.K.), and by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) as part of the Joint Research Program implemented at the Institute of Plant Science and Resources, Okayama University in Japan (2918, 3019 to T.H). We thank Yoshiyuki Tsuchiya for experimental assistance.
Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/1
Y1 - 2020/1
N2 - OsHKT1;1 in rice, belongs to the high-affinity K+ Transporter family, has been found to be involved in salt tolerance. OsHKT1;1 in japonica rice (Nipponbare) produces mRNA variants, but their functions remain elusive. In salt tolerant rice, Pokkali, eight OsHKT1;1 variants (V1-V8) were identified in addition to the full-length OsHKT1;1 (FL) cDNA. Absolute quantification by qPCR revealed that accumulation of OsHKT1;1-FL mRNA is minor in contrast to that of OsHKT1;1-V1,-V2,-V4, and-V7 mRNAs, all of which are predominant in shoots, while only V1 and V7 mRNAs are predominant in roots. Two electrode voltage clamp (TEVC) experiments using Xenopus laevis oocytes revealed that oocytes-expressing OsHKT1;1-FL from Pokkali exhibited inward-rectified currents in the presence of 96 mM Na+ as reported previously. Further TEVC analyses indicated that six of eight OsHKT1;1 variants elicited currents in a Na+ or a K+ bath solution. OsHKT1;1-V6 exhibited a similar inward rectification to the FL protein. Contrastingly, however, the rests mediated bidirectional currents in both Na+ and K+ bath solutions. These data suggest possibilities that novel mechanisms regulating the transport activity of OsHKT1;1 might exist, and that OsHKT1;1 variants might also carry out distinct physiological roles either independently or in combination with OsHKT1;1-FL.
AB - OsHKT1;1 in rice, belongs to the high-affinity K+ Transporter family, has been found to be involved in salt tolerance. OsHKT1;1 in japonica rice (Nipponbare) produces mRNA variants, but their functions remain elusive. In salt tolerant rice, Pokkali, eight OsHKT1;1 variants (V1-V8) were identified in addition to the full-length OsHKT1;1 (FL) cDNA. Absolute quantification by qPCR revealed that accumulation of OsHKT1;1-FL mRNA is minor in contrast to that of OsHKT1;1-V1,-V2,-V4, and-V7 mRNAs, all of which are predominant in shoots, while only V1 and V7 mRNAs are predominant in roots. Two electrode voltage clamp (TEVC) experiments using Xenopus laevis oocytes revealed that oocytes-expressing OsHKT1;1-FL from Pokkali exhibited inward-rectified currents in the presence of 96 mM Na+ as reported previously. Further TEVC analyses indicated that six of eight OsHKT1;1 variants elicited currents in a Na+ or a K+ bath solution. OsHKT1;1-V6 exhibited a similar inward rectification to the FL protein. Contrastingly, however, the rests mediated bidirectional currents in both Na+ and K+ bath solutions. These data suggest possibilities that novel mechanisms regulating the transport activity of OsHKT1;1 might exist, and that OsHKT1;1 variants might also carry out distinct physiological roles either independently or in combination with OsHKT1;1-FL.
KW - HKT
KW - K transport
KW - MRNA variants
KW - Na transport
KW - Rice
KW - Salt tolerance
UR - http://www.scopus.com/inward/record.url?scp=85077091088&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077091088&partnerID=8YFLogxK
U2 - 10.3390/plants9010016
DO - 10.3390/plants9010016
M3 - Article
AN - SCOPUS:85077091088
SN - 2223-7747
VL - 9
JO - Plants
JF - Plants
IS - 1
M1 - 16
ER -