TY - JOUR
T1 - Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions
AU - Nakazono, M.
AU - Tsuji, H.
AU - Li, Y.
AU - Saisho, D.
AU - Arimura, S. I.
AU - Tsutsumi, N.
AU - Hirai, A.
PY - 2000
Y1 - 2000
N2 - It is known that alcoholic fermentation is important for survival of plants under anaerobic conditions. Acetaldehyde, one of the intermediates of alcoholic fermentation, is not only reduced by alcohol dehydrogenase but also can be oxidized by aldehyde dehydrogenase (ALDH). To determine whether ALDH plays a role in anaerobic metabolism in rice (Oryza sativa L. cv Nipponbare), we characterized a cDNA clone encoding mitochondrial ALDH from rice (Aldh2a). Analysis of sub-cellular localization of ALDH2a protein using green fluorescent protein and an in vitro ALDH assay using protein extracts from Escherichia coli cells that overexpressed ALDH2a indicated that ALDH2a functions in the oxidation of acetaldehyde in mitochondria. A Southern-blot analysis indicated that mitochondrial ALDH is encoded by at least two genes in rice. We found that the Aldh2a mRNA was present at high levels in leaves of dark-grown seedlings, mature leaf sheaths, and panicles. It is interesting that expression of the rice Aldh2a gene, unlike the expression of the tobacco (Nicotiana tabacum) Aldh2a gene, was induced in rice seedlings by submergence. Experiments with ruthenium red, which is a blocker of Ca2+ fluxes in rice as well as maize (Zea mays), suggest that the induction of expression of Adh1 and Pdc1 by low oxygen stress is regulated by elevation of the cytosolic Ca2+ level. However, the induction of Aldh2a gene expression may not be controlled by the cytosolic Ca2+ level elevation. A possible involvement of ALDH2a in the submergence tolerance of rice is discussed.
AB - It is known that alcoholic fermentation is important for survival of plants under anaerobic conditions. Acetaldehyde, one of the intermediates of alcoholic fermentation, is not only reduced by alcohol dehydrogenase but also can be oxidized by aldehyde dehydrogenase (ALDH). To determine whether ALDH plays a role in anaerobic metabolism in rice (Oryza sativa L. cv Nipponbare), we characterized a cDNA clone encoding mitochondrial ALDH from rice (Aldh2a). Analysis of sub-cellular localization of ALDH2a protein using green fluorescent protein and an in vitro ALDH assay using protein extracts from Escherichia coli cells that overexpressed ALDH2a indicated that ALDH2a functions in the oxidation of acetaldehyde in mitochondria. A Southern-blot analysis indicated that mitochondrial ALDH is encoded by at least two genes in rice. We found that the Aldh2a mRNA was present at high levels in leaves of dark-grown seedlings, mature leaf sheaths, and panicles. It is interesting that expression of the rice Aldh2a gene, unlike the expression of the tobacco (Nicotiana tabacum) Aldh2a gene, was induced in rice seedlings by submergence. Experiments with ruthenium red, which is a blocker of Ca2+ fluxes in rice as well as maize (Zea mays), suggest that the induction of expression of Adh1 and Pdc1 by low oxygen stress is regulated by elevation of the cytosolic Ca2+ level. However, the induction of Aldh2a gene expression may not be controlled by the cytosolic Ca2+ level elevation. A possible involvement of ALDH2a in the submergence tolerance of rice is discussed.
UR - http://www.scopus.com/inward/record.url?scp=0033792187&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033792187&partnerID=8YFLogxK
U2 - 10.1104/pp.124.2.587
DO - 10.1104/pp.124.2.587
M3 - Article
C2 - 11027709
AN - SCOPUS:0033792187
SN - 0032-0889
VL - 124
SP - 587
EP - 598
JO - Plant physiology
JF - Plant physiology
IS - 2
ER -