Field-tunable toroidal moment in a chiral-lattice magnet

Lei Ding, Xianghan Xu, Harald O. Jeschke, Xiaojian Bai, Erxi Feng, Admasu Solomon Alemayehu, Jaewook Kim, Fei Ting Huang, Qiang Zhang, Xiaxin Ding, Neil Harrison, Vivien Zapf, Daniel Khomskii, Igor I. Mazin, Sang Wook Cheong, Huibo Cao

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


Ferrotoroidal order, which represents a spontaneous arrangement of toroidal moments, has recently been found in a few linear magnetoelectric materials. However, tuning toroidal moments in these materials is challenging. Here, we report switching between ferritoroidal and ferrotoroidal phases by a small magnetic field, in a chiral triangular-lattice magnet BaCoSiO4 with tri-spin vortices. Upon applying a magnetic field, we observe multi-stair metamagnetic transitions, characterized by equidistant steps in the net magnetic and toroidal moments. This highly unusual ferri-ferroic order appears to come as a result of an unusual hierarchy of frustrated isotropic exchange couplings revealed by first principle calculations, and the antisymmetric exchange interactions driven by the structural chirality. In contrast to the previously known toroidal materials identified via a linear magnetoelectric effect, BaCoSiO4 is a qualitatively new multiferroic with an unusual coupling between several different orders, and opens up new avenues for realizing easily tunable toroidal orders.

Original languageEnglish
Article number5339
JournalNature communications
Issue number1
Publication statusPublished - Dec 1 2021

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Field-tunable toroidal moment in a chiral-lattice magnet'. Together they form a unique fingerprint.

Cite this