TY - JOUR
T1 - Folding of the triangular lattice in a discrete three-dimensional space
T2 - Crumpling transitions in the negative-bending-rigidity regime
AU - Nishiyama, Yoshihiro
PY - 2005/9
Y1 - 2005/9
N2 - Folding of the triangular lattice in a discrete three-dimensional space is studied numerically. Such "discrete folding" was introduced by Bowick and co-workers as a simplified version of the polymerized membrane in thermal equilibrium. According to their cluster-variation method (CVM) analysis, there appear various types of phases as the bending rigidity K changes in the range -<K<. In this paper, we investigate the K<0 regime, for which the CVM analysis with the single-hexagon-cluster approximation predicts two types of (crumpling) transitions of both continuous and discontinuous characters. We diagonalized the transfer matrix for strip widths up to L=26 with the aid of the density-matrix renormalization group. Thereby, we found that discontinuous transitions occur successively at K=-0.76(1) and -0.32(1). Actually, these transitions are accompanied with distinct hysteresis effects. On the contrary, the latent-heat releases are suppressed considerably as Q=0.03(2) and 0.04(2) for the respective transitions. These results indicate that the singularity of crumpling transition can turn into a weak first-order type by appreciating the fluctuations beyond a mean-field level.
AB - Folding of the triangular lattice in a discrete three-dimensional space is studied numerically. Such "discrete folding" was introduced by Bowick and co-workers as a simplified version of the polymerized membrane in thermal equilibrium. According to their cluster-variation method (CVM) analysis, there appear various types of phases as the bending rigidity K changes in the range -<K<. In this paper, we investigate the K<0 regime, for which the CVM analysis with the single-hexagon-cluster approximation predicts two types of (crumpling) transitions of both continuous and discontinuous characters. We diagonalized the transfer matrix for strip widths up to L=26 with the aid of the density-matrix renormalization group. Thereby, we found that discontinuous transitions occur successively at K=-0.76(1) and -0.32(1). Actually, these transitions are accompanied with distinct hysteresis effects. On the contrary, the latent-heat releases are suppressed considerably as Q=0.03(2) and 0.04(2) for the respective transitions. These results indicate that the singularity of crumpling transition can turn into a weak first-order type by appreciating the fluctuations beyond a mean-field level.
UR - http://www.scopus.com/inward/record.url?scp=28844454274&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=28844454274&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.72.036104
DO - 10.1103/PhysRevE.72.036104
M3 - Article
AN - SCOPUS:28844454274
SN - 1539-3755
VL - 72
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 3
M1 - 036104
ER -