Free radicals and oxidative stress: Targeted ESR measurement of free radicals

Toru Egashira, Fusako Takayama

Research output: Contribution to journalReview articlepeer-review

6 Citations (Scopus)


The detection of free radicals generated within the body may contribute to clarifying the pathophysiological role of free radicals in disease processes. As an appropriate procedure to examine the generation of free radicals in a biological system, electron spin resonance (ESR) has emerged as a powerful tool for detection and identification. A method for determination of oxygen radical scavenging activity using ESR and the spin trapping technique was developed. Oxygen radicals were trapped by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) or α-phenyl-N-t-butylnitrone (PBN), and the DMPO or PBN spin aduct signal was measured quantitatively by an ESR spectrometer. The spin trapping method using ESR has also been reported for not only in vitro and ex vivo measurements but also in vivo measurements. In in vivo ESR, nitroxyl radical is being used as a spin trap well. ESR signal intensities of nitroxyl radical are measured after administration to animals and the signal decay rates of nitroxyl radical have reported to be influenced by various types of oxidative stress. With this method, it is possible to specify the type of radical or the location at which the free radicals are produced. The spin trapping method by in vivo ESR is an effective procedure for giving non-invasive measurements in animals. ESR imaging in the organs of live animals can also be obtained after injection of nitroxyl radicals as an imaging agent using ESR-computed tomography. In vivo ESR imaging has been established as a powerful technique for determining the spatial distribution of free radicals in living organs and tissues.

Original languageEnglish
Pages (from-to)229-236
Number of pages8
JournalFolia Pharmacologica Japonica
Issue number4
Publication statusPublished - 2002
Externally publishedYes


  • ESR
  • Free radical
  • In vivo ESR imaging
  • Oxidative stress
  • Spin traps

ASJC Scopus subject areas

  • Pharmacology


Dive into the research topics of 'Free radicals and oxidative stress: Targeted ESR measurement of free radicals'. Together they form a unique fingerprint.

Cite this